Fast filtering and animation of large dynamic networks

Springer Science and Business Media LLC - Tập 3 - Trang 1-16 - 2014
Przemyslaw A Grabowicz1,2, Luca Maria Aiello3, Filippo Menczer4
1Max Planck Institute for Software Systems, Saarland University, Saarbrucken, Germany
2Institute for Cross-Disciplinary Physics and Complex Systems, University of Balearic Islands, Palma de Mallorca, Spain
3Yahoo! Research Barcelona, Spain
4Center for Complex Networks and Systems Research, Indiana University, Bloomington, USA

Tóm tắt

Detecting and visualizing what are the most relevant changes in an evolving network is an open challenge in several domains. We present a fast algorithm that filters subsets of the strongest nodes and edges representing an evolving weighted graph and visualize it by either creating a movie, or by streaming it to an interactive network visualization tool. The algorithm is an approximation of exponential sliding time-window that scales linearly with the number of interactions. We compare the algorithm against rectangular and exponential sliding time-window methods. Our network filtering algorithm: (i) captures persistent trends in the structure of dynamic weighted networks, (ii) smoothens transitions between the snapshots of dynamic network, and (iii) uses limited memory and processor time. The algorithm is publicly available as open-source software.

Tài liệu tham khảo

Erten C, Harding P, Kobourov S, Wampler K, Yee G: GraphAEL: graph animations with evolving layouts. In Graph drawing. Edited by: Liotta G. Springer, Berlin; 2004. Broeck W, Gioannini C, Goncalves B, Quaggiotto M, Colizza V, Vespignani A: The GLEaMviz computational tool, a publicly available software to explore realistic epidemic spreading scenarios at the global scale. BMC Infect Dis 2011., 11: 10.1186/1471-2334-11-37 Bastian M, Heymann S, Jacomy M: Gephi: an open source software for exploring and manipulating networks. In ICWSM’09: proceedings of the international AAAI conference on weblogs and social media. AAAI Press, Menlo Park; 2009. Dutot A, Guinand F, Olivier D, Pigné Y: GraphStream: a tool for bridging the gap between complex systems and dynamic graphs. EPNACS: emergent properties in natural and artificial complex systems 2007. Brandes U, Fleischer D, Puppe T: Dynamic spectral layout of small worlds. In GD’05: proceedings of the 13th international symposium on graph drawing. Springer, Berlin; 2005. Brandes U, Fleischer D, Puppe T: Dynamic spectral layout with an application to small worlds. J Graph Algorithms Appl 2007, 11(2):325–343. 10.7155/jgaa.00149 Brandes U, Indlekofer N, Mader M: Visualization methods for longitudinal social networks and stochastic actor-oriented modeling. Soc Netw 2012, 34(3):291–308. 10.1016/j.socnet.2011.06.002 Kamada T: Visualizing abstract objects and relations. World Scientific, Singapore; 1989. Tollis IG, Di Battista G, Eades P, Tamassia R: Graph drawing: algorithms for the visualization of graphs. Prentice Hall, New York; 1999. Kamada T, Kawai S: An algorithm for drawing general undirected graphs. Inf Process Lett 1989, 31: 7–15. 10.1016/0020-0190(89)90102-6 Fruchterman TMJ, Reingold EM: Graph drawing by force-directed placement. Softw Pract Exp 1991, 21(11):1129–1164. 10.1002/spe.4380211102 Gansner ER, North SC: Improved force-directed layouts. In GD’98: proceedings of the 6th international symposium on graph drawing. Springer, London; 1998. Hu YF: Efficient and high quality force-directed graph drawing. The Mathematica J 2005, 10: 37–71. Herman I, Melançon G, Marshall MS: Graph visualization and navigation in information visualization: a survey. IEEE Trans Vis Comput Graph 2000, 6: 24–43. 10.1109/2945.841119 Munzner TM (2000) Interactive visualization of large graphs and networks. PhD thesis, Stanford University, Stanford Batagelj V, Mrvar A: Pajek—analysis and visualization of large networks. In Graph drawing. Edited by: Mutzel P, Junger M, Leipert S. Springer, Berlin; 2002. 10.1007/3-540-45848-4_54 De Nooy W, Mrvar A, Batagelj V: Exploratory social network analysis with Pajek. Cambridge University Press, Cambridge; 2005. Brandes U, Wagner D: Visone—analysis and visualization of social networks. In Graph drawing software. Springer, Berlin; 2003. Adar E: GUESS: a language and interface for graph exploration. In Proceedings of the SIGCHI conference on human factors in computing systems, CHI’06. ACM, New York; 2006. Network workbench tool, Indiana University, Northeastern University, and University of Michigan. Accessed 13 Mar 2014, [http://nwb.cns.iu.edu] Smith MA, Shneiderman B, Milic-Frayling N, Mendes Rodrigues E, Barash V, Dunne C, Capone T, Perer A, Gleave E: Analyzing (social media) networks with NodeXL. In C&T’09: proceedings of the fourth international conference on communities and technologies. ACM, New York; 2009. Auber D, Archambault D, Lambert RBA, Mathiaut M, Mary P, Delest M, Dubois J, Melancon G (2012) The tulip 3 framework: a scalable software library for information visualization applications based on relational data. Technical report 7860, INRIA Ahn JW, Taieb-Maimon M, Sopan A, Plaisant C, Shneiderman B: Temporal visualization of social network dynamics: prototypes for nation of neighbors. In SBP’11: proceedings of the 4th international conference on social computing, behavioral-cultural modeling and prediction. Springer, Berlin; 2011. Heer J, Vizster BD: Visualizing online social networks. In InfoVis’05: proceedings of the IEEE symposium on information visualization. IEEE Computer Society, Washington; 2005. Falkowski T, Bartelheimer J, Spiliopoulou M: Mining and visualizing the evolution of subgroups in social networks. In WI’06: proceedings of the 2006 IEEE/WIC/ACM international conference on web intelligence. IEEE Computer Society, Washington; 2006. Demetrescu C, Eppstein D, Galil Z, Italiano GF: Dynamic graph algorithms. In Algorithms and theory of computation handbook. Edited by: Atallah MJ, Blanton M. Chapman & Hall/CRC, Boca Raton; 2010. Rosvall M, Bergstrom CT: Mapping change in large networks. PLoS ONE 2010., 5: 10.1371/journal.pone.0008694 Yi JS, Elmqvist N, Lee S: TimeMatrix: analyzing temporal social networks using interactive matrix-based visualizations. Int J Hum-Comput Interact 2010, 26: 11–12. 10.1080/10447318.2010.516722 Stein K, Wegener R, Schlieder C: Pixel-oriented visualization of change in social networks. In ASONAM’10: proceedings of the international conference on advances in social networks analysis and mining. IEEE Computer Society, Washington; 2010. Gove R, Gramsky N, Kirby R, Sefer E, Sopan A, Dunne C, Shneiderman B, Taieb-Maimon M: NetVisia: heat map & matrix visualization of dynamic social network statistics & content. In SocialCom’11: proceedings of the 3rd IEEE international conference on social computing. IEEE Computer Society, Washington; 2011. Farrugia M, Quigley A: Effective temporal graph layout: a comparative study of animation versus static display methods. Inf Vis 2011, 10: 47–64. Ramalingam G, Reps T: On the computational complexity of dynamic graph problems. Theor Comput Sci 1996, 158: 233–277. 10.1016/0304-3975(95)00079-8 Henzinger MR, King V: Randomized fully dynamic graph algorithms with polylogarithmic time per operation. J ACM 1999, 46: 502–516. 10.1145/320211.320215 Friedrich C, Houle ME: Graph drawing in motion II. In Graph drawing. Edited by: Mutzel P, Junger M, Leipert S. Springer, Berlin; 2002:220–231. 10.1007/3-540-45848-4_18 Purchase HC: Which aesthetic has the greatest effect on human understanding? GD’97: proceedings of the 5th international symposium on graph drawing Springer, London; 1997, 248–261. [http://dl.acm.org/citation.cfm?id=647549.728779] Huang W, Hong SH, Eades P: How people read sociograms: a questionnaire study. APVis’06: proceedings of the 2006 Asia-Pacific symposium on information visualisation—volume 60 Australian Computer Society, Darlinghurst; 2006, 199–206. [http://dl.acm.org/citation.cfm?id=1151903.1151932] Huang W, Eades P, Hong SH: Beyond time and error: a cognitive approach to the evaluation of graph drawings. Proceedings of the 2008 workshop on BEyond time and errors: novel evaLuation methods for Information Visualization, BELIV’08 ACM, New York; 2008, 1–8. [http://doi.acm.org/10.1145/1377966.1377970] Eades PWL, Misue K, Sugiyama K: Preserving the mental map of a diagram. Compugraphics 1991, 24–33. Misue K, Eades P, Lai W, Sugiyama K: Layout adjustment and the mental map. J Vis Lang Comput 1995, 6(2):183–210. 10.1006/jvlc.1995.1010 Freire M, Rodríguez P: Preserving the mental map in interactive graph interfaces. In AVI’06: proceedings of the working conference on advanced visual interfaces. ACM, New York; 2006. Coleman MK, Parker DS: Aesthetics-based graph layout for human consumption. Softw Pract Exp 1996, 26(12):1415–1438. 10.1002/(SICI)1097-024X(199612)26:12<1415::AID-SPE69>3.0.CO;2-P Archambault D, Purchase HC: The “Map” in the mental map: experimental results in dynamic graph drawing. Int J Hum-Comput Stud 2013, 71(11):1044–1055. http://www.sciencedirect.com/science/article/pii/S107158191300102X 10.1016/j.ijhcs.2013.08.004 Archambault D, Purchase H: The mental map and memorability in dynamic graphs. 2012 IEEE Pacific visualization symposium (PacificVis) 2012, 89–96. 10.1109/PacificVis.2012.6183578 Archambault D, Purchase H: Mental map preservation helps user orientation in dynamic graphs. In Graph drawing. Edited by: Didimo W, Patrignani M. Springer, Berlin; 2013:475–486. 10.1007/978-3-642-36763-2_42 Ghani S, Elmqvist N, Yi JS: Perception of animated node-link diagrams for dynamic graphs. Comput Graph Forum 2012, 31(3):1205–1214. 10.1111/j.1467-8659.2012.03113.x Archambault D, Munzner T, Auber D: GrouseFlocks: steerable exploration of graph hierarchy space. IEEE Trans Vis Comput Graph 2008, 14(4):900–913. 10.1109/TVCG.2008.34 Kriglstein S, Pohl M, Stachl C: Animation for time-oriented data: an overview of empirical research. 16th international conference on information visualisation 2012, 30–35. 10.1109/IV.2012.16 North SC: Incremental layout in DynaDAG. In GD’95: proceedings of the symposium on graph drawing. Springer, London; 1996. North SC, Woodhull G: Online hierarchical graph drawing. In GD’01: revised papers from the 9th international symposium on graph drawing. Springer, London; 2002. Archambault D, Munzner T, Auber D: TopoLayout: multilevel graph layout by topological features. IEEE Trans Vis Comput Graph 2007, 13(2):305–317. 10.1109/TVCG.2007.46 Archambault D: Structural differences between two graphs through hierarchies. In GI’09: proceedings of graphics interface. Canadian Information Processing Society, Toronto; 2009. Archambault D, Purchase H, Pinaud B: The readability of path-preserving clusterings of graphs. Comput Graph Forum 2010, 29(3):1173–1182. http://hal.inria.fr/inria-00471432 10.1111/j.1467-8659.2009.01683.x Blythe J, McGrath C, Krackhardt D: The effect of graph layout on inference from social network data. GD’95: proceedings of the symposium on graph drawing Springer, London; 1996, 40–51. [http://dl.acm.org/citation.cfm?id=647547.728581] Brandes U: Drawing on physical analogies. In Drawing graphs. Edited by: Kaufmann M, Wagner D. Springer, London; 2001. Branke J: Dynamic graph drawing. In Drawing graphs. Edited by: Kaufmann M, Wagner D. Springer, London; 2001. Diehl S, Gorg C: Graphs, they are changing. In Graph drawing. Edited by: Goodrich M, Kobourov S. Springer, Berlin; 2002. 10.1007/3-540-36151-0_3 Frishman Y, Tal A: Online dynamic graph drawing. IEEE Trans Vis Comput Graph 2008, 14: 727–740. 10.1109/TVCG.2008.11 Rodrigues EM, Milic-Frayling N, Smith M, Shneiderman B, Hansen D: Group-in-a-box layout for multi-faceted analysis of communities. In SocialCom’11: proceedings of the 3rd IEEE international conference on social computing. IEEE Computer Society, Washington; 2011. Dynes SBC, Gloor PA, Gloor PA, Gloor PA, Laubacher R, Laubacher R, Zhao Y, Zhao Y, Dynes S: Temporal visualization and analysis of social networks. NAACSOS’04: conference of North American Association for Computational Social and Organizational Science 2004. Kumar G, Garland M: Visual exploration of complex time-varying graphs. IEEE Trans Vis Comput Graph 2006, 12: 805–812. 10.1109/TVCG.2006.193 Hadlak S, Schulz HJ, Schumann H: In situ exploration of large dynamic networks. IEEE Trans Vis Comput Graph 2011, 17(12):2334–2343. http://dblp.uni-trier.de/db/journals/tvcg/tvcg17.html#HadlakSS11 10.1109/TVCG.2011.213 Sallaberry A, Muelder C, Ma KL: Clustering, visualizing, and navigating for large dynamic graphs. GD’12: proceedings of the 20th international conference on graph drawing Springer, Berlin; 2013, 487–498. [http://dx.doi.org/10.1007/978–3-642–36763–2_43]. Asur S, Parthasarathy S, Ucar D: An event-based framework for characterizing the evolutionary behavior of interaction graphs. In KDD’07: proceedings of the 13th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, New York; 2007. Clauset AEN: Persistence and periodicity in a dynamic proximity network. DIMACS workshop on computational methods for dynamic interaction networks 2007. Cattuto C, Van den Broeck W, Barrat A, Colizza V, Pinton JF, Vespignani A: Dynamics of person-to-person interactions from distributed RFID sensor networks. PLoS ONE 2010., 5(7): 10.1371/journal.pone.0011596 Krings G, Karsai M, Bernhardsson S, Blondel V, Saramaki J: Effects of time window size and placement on the structure of an aggregated communication network. EPJ Data Sci 2012., 1: http://www.epjdatascience.com/content/1/1/4 http://www.epjdatascience.com/content/1/1/4 10.1140/epjds4 Lotan G (2011) Breaking bin Laden: a closer look. Accessed 13 Mar 2014, [http://blog.socialflow.com/post/5454638896/breaking-bin-laden-a-closer-look] LaRowe G, Ambre S, Burgoon J, Ke W, Börner K: The scholarly database and its utility for scientometrics research. Scientometrics 2009, 79(2):219–234. 10.1007/s11192-009-0414-2 Graph Streaming API documentation. Accessed 13 Mar 2014, [http://wiki.gephi.org/index.php/Specification_-_GSoC_Graph_Streaming_API] Mencoder tool documentation. Accessed 13 Mar 2014, [http://www.mplayerhq.hu/design7/documentation.html]