Fast all-optical nuclear spin echo technique based on EIT
The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics - Tập 70 - Trang 1-9 - 2016
Tóm tắt
We demonstrate an all-optical Raman spin echo technique, using electromagnetically
induced transparency (EIT) to create the pulses required for a spin echo sequence:
initialization, pi-rotation, and readout. The first pulse of the sequence induces
coherence directly from a mixed state, and the technique is used to measure the nuclear
spin coherence of an inhomogeneously broadened ensemble of rare-earth ions
(Pr3 +) in a
crystal. The rephasing pi-rotation is shown to offer an advantage of combining the
rephasing action with the operation of a phase gate, particularly useful in e.g. dynamic
decoupling sequences. In contrast to many previous experiments the sequence does not
require any preparatory hole burning, which greatly shortens the total duration of the
sequence. The effect of the different pulses is characterized by quantum state tomography
and compared with simulations. We demonstrate two applications of the technique:
compensating the magnetic field across our sample by monitoring T
2 reductions
from stray magnetic fields, and measuring coherence times at temperatures up to 11 K,
where standard preparation techniques are difficult to implement. We explore the potential
of the technique, in particular for systems with much shorter T
2, and other
possible applications.
Tài liệu tham khảo
H.J. Kimble, Nature 453, 1023 (2008)
Hoi-Kwong Lo, Marcos Curty, Kiyoshi Tamaki, Nat. Photon. 8, 595 (2014)
I.M. Georgescu, S. Ashhab, F. Nori, Rev. Mod. Phys. 86, 153 (2014)
T.D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, J.L. O/’Brien, Nature 464, 45 (2010)
G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P.R. Hemmer, F. Jelezko, J. Wrachtrup, Nat. Mater. 8, 383 (2009)
W.F. Koehl, B.B. Buckley, F.J. Heremans, G. Calusine, D.D. Awschalom, Nature 479, 84 (2011)
M. Zhong, M.P. Hedges, R.L. Ahlefeldt, J.G. Bartholomew, S.E. Beavan, S.M. Wittig, J.J. Longdell, M.J. Sellars, Nature 517, 177 (2015)
N. Bloembergen, E.M. Purcell, R.V. Pound, Phys. Rev. 73, 679 (1948)
C.G. Yale, B.B. Buckley, D.J. Christle, G. Burkard, F.J. Heremans, L.C. Bassett, D.D. Awschalom, Proc. Natl. Acad. Sci. 110, 7595 (2013)
B.S. Ham, M.S. Shahriar, M.K. Kim, P.R. Hemmer, Phys. Rev. B 58, R11825 (1998)
A. Louchet, Y. Le Du, T. Brouri, F. Bretenaker, T. Chanelière, F. Goldfarb, I. Lorgeré, J.-L. Le Gouët, Solid State Sci. 10, 1374 (2008)
M. Fleischhauer, A. Imamoglu, J.P. Marangos, Rev. Mod. Phys. 77, 633 (2005)
A. Walther, L. Rippe, Y. Yan, J. Karlsson, D. Serrano, A.N. Nilsson, S. Bengtsson, S. Kröll, Phys. Rev. A 92, 022319 (2015)
E. Fraval, M.J. Sellars, J.J. Longdell, Phys. Rev. Lett. 95, 030506 (2005)
A. Imamoglu, J.E. Field, S.E. Harris, Phys. Rev. Lett. 66, 1154 (1991)
L. Rippe, B. Julsgaard, A. Walther, Yan Ying, S. Kröll, Phys. Rev. A 77, 022307 (2008)
A. Amari, A. Walther, M. Sabooni, M. Huang, S. Kröll, M. Afzelius, I. Usmani, B. Lauritzen, N. Sangouard, H. de Riedmatten, N. Gisin, J. Luminescence 130, 1579 (2010)
M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, United Kingdom, 2000) Eq. 8.148, Chap. 8.4.2.
G. Heinze, S. Mieth, T. Halfmann, Phys. Rev. A 84, 013827 (2011)
J.J. Longdell, M.J. Sellars, N.B. Manson, Phys. Rev. B 66, 035101 (2002)
B.S. Ham, M.S. Shahriar, M.K. Kim, P.R. Hemmer, Opt. Lett. 22, 1849 (1997)
D.E. McCumber, M.D. Sturge, J. Appl. Phys. 34, 1682 (1963)
Y.S. Bai, R. Kachru, Phys. Rev. B 46, 13735 (1992)
F. Könz, Y. Sun, C.W. Thiel, R.L. Cone, R.W. Equall, R.L. Hutcheson, R.M. Macfarlane, Phys. Rev. B 68, 085109 (2003)
A. Arcangeli, R.M. Macfarlane, A. Ferrier, P. Goldner, Phys. Rev. B 92, 224401 (2015)
R.C. Hilborn, Am. J. Phys. 50, 982 (1982)
P.R. Berman, Phys. Rev. A 72, 035801 (2005)
M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, United Kingdom, 2000)