Fast algorithm for discrete fractional Hadamard transform

Aleksandr Cariow1, Dorota Majorkowska-Mech1
1Faculty of Computer Science and Information Technology, West Pomeranian University of Technology, Szczecin, Poland

Tóm tắt

Từ khóa


Tài liệu tham khảo

Yetik, I.Ş., Kutay, M.A., Ozaktas, H.M.: Image representation and compression with the fractional Fourier transform. Opt. Commun. 197, 275–278 (2001)

Hennelly, B., Sheridan, J.T.: Fractional Fourier transform-based image encryption: phase retrieval algorithm. Opt. Commun. 226, 61–80 (2003)

Liu, S., Mi, Q., Zhu, B.: Optical image encryption with multistage and multichannel fractional Fourier-domain filtering. Opt. Lett. 26, 1242–1244 (2001)

Nischchal, N.K., Joseph, J., Singh, K.: Fully phase encryption using fractional Fourier transform. Opt. Eng. 42, 1583–1588 (2003)

Djurović, I., Stanković, S., Pitas, I.: Digital watermarking in the fractional Fourier transformation domain. J. Netw. Comput. Appl. 24, 167–173 (2001)

Pei, S.C., Yeh, M.H.: The discrete fractional cosine and sine transforms. IEEE Trans. Sig. Proc. 49, 1198–1207 (2001)

Pei, S.C., Tseng, C.C., Yeh, M.H., Shyu, J.J.: The discrete fractional Hartley and Fourier transforms. IEEE Trans. Circuits Syst. Part II 45, 665–675 (1998)

Pei, S.C., Yeh, M.H., Shyu, J.J.: Discrete fractional Hadamard transform, Vol. 3, pp 179–182 (1999)

Majorkowska-Mech, D., Cariow, A.: An algorithm for discrete fractional Hadamad transform with reduced arithmetical complexity. Przeglad Elektrotechniczny (Electrical Review) 88, 70–76 (2012)

Sylvester, J.J.: Thoughts on inverse orthogonal matrices, simultaneous sign-successions, and tessellated pavements in two or more colours, with applications to Newton’s rule, ornamental tile-work, and the theory of numbers. Philos. Mag. 34, 461–475 (1867)

Bella, T., Olshevsky, V., Sankhnovich L: Ranks of Hadamard matrices and equivalence of Sylvester Hadamard and pseudo-noise matrices. Operator Theory: Advances and Applications, Vol. 179, pp 35–46. Birkhauser, Verlag, Basel/Switzerland (2007)

Mitrouli, M.: A sign test for detecting the equivalence of Sylvester Hadamard matrices. Numer. Algor. 57, 169–186 (2011)

Horadam, K.J.: Hadamard Matrices and their Applications. Princeton University Press, Princeton (2006)

Sloane, N.J.A., MacWilliams F.J.: The Theory of Error-Correcting Codes. Elsevier/North-Holland, Amsterdam (1977)

Korn, G.A., Korn, T.M.: Mathematical Handbook for Scientists and Engineers: Definitions, Theorems, and Formulas for Reference and Review. McGraw-Hill, New York (1968)

Candan, Ç.C., Kutay, M.A., Ozaktas, H.M.: The discrete fractional Fourier transform. IEEE Trans. Sig. Proc. 48, 1329–1337 (2000)

Yarlagadda, R., Hershey, J.: A note on the eigenvectors of Hadamard matrices of order 2 n . Linear Algebra Appl. 45, 43–53 (1982)

Yarlagadda, R.K.R., Hershey, J.E: Hadamard Matrix Analysis and Synthesis. Kluwer Academic Publishers, Boston (1997)