Fast Convolutional Neural Network Training Using Selective Data Sampling: Application to Hemorrhage Detection in Color Fundus Images

IEEE Transactions on Medical Imaging - Tập 35 Số 5 - Trang 1273-1284 - 2016
Mark J. J. P. van Grinsven1, Bram van Ginneken1, Carel B. Hoyng2, Thomas Theelen2, Clara I. Sá‎nchez1
1Diagnostic Image Analysis Group, Radboud University Medical Center, Nijmegen, The Netherlands
2Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands

Tóm tắt

Từ khóa


Tài liệu tham khảo

10.1109/ISBI.2006.1625167

10.1016/j.media.2014.12.001

10.1016/0020-0190(89)90206-8

efraimidis, 2008, Encyclopedia of Algorithms, 1

seff, 2014, 2D view aggregation for lymph node detection using a shallow hierarchy of linear classifiers, Proc MICCAI, 8673, 544

simonyan, 2014, Very deep convolutional networks for large-scale image recognition, ArXiv 14091556

karssemeijer, 2003, Computer-aided detection versus independent double reading of masses on mammograms, Radiology, 227, 192, 10.1148/radiol.2271011962

10.1167/iovs.12-11449

10.1016/j.jacr.2009.06.001

10.1016/j.physa.2011.12.004

10.1006/jcss.1997.1504

10.1109/ISBI.2007.356896

10.1109/ISBI.2015.7163984

10.1023/A:1007330508534

10.1109/TNNLS.2012.2228231

10.1145/1321440.1321461

10.1016/S0140-6736(09)62124-3

10.1109/RBME.2010.2084567

10.1109/ECTICon.2012.6254356

10.1007/s10278-009-9246-0

10.1109/TMI.2008.920619

rasta, 2015, A comparative study on preprocessing techniques in diabetic retinopathy retinal images: illumination correction and contrast enhancement, Journal of medical signals and sensors, 5, 40, 10.4103/2228-7477.150414

krizhevsky, 2012, Imagenet classification with deep convolutional neural networks, Adv Neural Inf Process Syst, 25, 1097

10.1088/1742-6596/274/1/012039

10.1109/ICCV.2015.123

10.1007/978-3-642-40763-5_51

graham, 2015, Kaggle diabetic retinopathy detection competition report

10.1016/j.neunet.2012.02.023

cruz-roa, 2013, A deep learning architecture for image representation, visual interpretability and automated basal-cell carcinoma cancer detection, Proc MICCAI, 8150, 403

10.1007/978-3-319-10470-6_39

10.1016/j.neunet.2014.09.003

10.1007/978-0-387-21579-2_9

10.1038/nature14539

10.1109/TKDE.2008.239

10.1007/s10916-011-9802-2

10.1145/1007730.1007733

10.1109/MIS.2009.36

10.1016/j.compmedimag.2013.05.001

10.1109/CVPR.2015.7298965

10.1109/TMI.2005.843738

srivastava, 2014, Dropout: A simple way to prevent neural networks from overfitting, J Mach Learn Res, 15, 1929

deepa, 2015, Certain investigation of the retinal hemorrhage detection in fundus images, Int J Electron Commun Eng, 2, 29

bergstra, 2012, Random search for hyper-parameter optimization, J Mach Learn Res, 13, 281

10.1046/j.1464-5491.2002.00613.x

10.1109/TPAMI.2012.231

10.1016/0031-3203(81)90009-1

ioffe, 2015, Batch normalization: Accelerating deep network training by reducing internal covariate shift, ArXiv 150203167

10.1109/TMI.2012.2227119