Fast Algorithms for Zero-Dimensional Polynomial Systems using Duality
Tóm tắt
Many questions concerning a zero-dimensional polynomial system can be reduced to linear algebra operations in the quotient algebra A=k[X
1
,…,X
n
]/ℐ, where ℐ is the ideal generated by the input system. Assuming that the multiplicative structure of the algebra A is (partly) known, we address the question of speeding up the linear algebra phase for the computation of minimal polynomials and rational parametrizations in A. We present new formulæ for the rational parametrizations, extending those of Rouillier, and algorithms extending ideas introduced by Shoup in the univariate case. Our approach is based on the A-module structure of the dual space
$\widehat{A}$
. An important feature of our algorithms is that we do not require
$\widehat{A}$
to be free and of rank 1. The complexity of our algorithms for computing the minimal polynomial and the rational parametrizations are O(2
nD
5/2
) and O(n2
nD
5/2
) respectively, where D is the dimension of A. For fixed n, this is better than algorithms based on linear algebra except when the complexity of the available matrix product has exponent less than 5/2.
Tài liệu tham khảo
Alonso, M.-E., Becker, E., Roy, M.-F., Wörmann, T.: Zeros, multiplicities, and idempotents for zero-dimensional systems. In: Algorithms in algebraic geometry and applications (Santander, 1994), Birkhäuser, Basel, 1996, pp. 1–15
Antoniou, A.: Digital Filters: Analysis and Design. McGraw-Hill Book Co., 1979
Arnaudiès, J.-M., Valibouze, A.: Lagrange resolvents. J. Pure Appl. Algebra 117/118, 23–40, 1997, Algorithms for algebra (Eindhoven, 1996)
Becker, E., Cardinal, J. P., Roy, M.-F., Szafraniec, Z.: Multivariate Bezoutians, Kronecker symbol and Eisenbud-Levine formula. In: Algorithms in algebraic geometry and applications (Santander, 1994), Birkhäuser, Basel, 1996, pp. 79–104
Becker, E., Wörmann, T.: Radical computations of zero-dimensional ideals and real root counting. Mathematics and Computers in Simulation, 42(4-6), 561–569 (1996), Symbolic computation, new trends and developments (Lille, 1993)
Berlekamp, E. R.: Algebraic coding theory. McGraw-Hill Book Co., New York, 1968
Björck, G.: Functions of modulus 1 on Z n whose Fourier transforms have constant modulus, and ‘‘cyclic n-roots’’. In: Recent advances in Fourier analysis and its applications (Il Ciocco, 1989), Volume 315 of NATO Advance Science Institutes Series C: Mathematical and Physical Sciences, Kluwer Academic Publishers, Dordrecht, 1990, pp. 131–140
Bommer, R.: High order derivations and primary ideals to regular prime ideals. Arch. Math. 46(6), 511–521 (1986)
Bordewijk, J. L.: Inter-reciprocity applied to electrical networks. Appl. Sci. Res. B 1, 1–74 (1956)
Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user language. Journal of Symbolic Computation 24(3-4), 235–265 (1997) See also http://www.maths.usyd.edu.au:8000/u/magma/
Bostan, A., Lecerf, G., Schost, É.: Tellegen’s principle into practice. In: Symbolic and Algebraic Computation, 2003, Proceedings ISSAC’03, Philadelphia, August 2003. To appear
Brent, R. P., Kung, H. T.: Fast algorithms for manipulating formal power series. J. ACM 25(4), 581–595, October 1978
Buchberger, B.: Gröbner bases: An algorithmic method in polynomial ideal theory. In: Multidimensional System Theory, Reidel, Dordrecht, 1985, pp. 374–383
Bürgisser, P., Clausen, M., Shokrollahi, A.: Algebraic Complexity Theory. Springer, 1997
Charlap, L. S., Coley, R., Robbins, D.: Enumeration of rational points on elliptic curves over finite fields. Preprint, 1991
Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions. J. Symbolic Comput. 9(3), 251–280, March 1990
Cox, D., Little, J., O’Shea, D.: Using algebraic geometry. Springer-Verlag, New York, 1998
Eisenbud, D.: Commutative algebra, with a view toward algebraic geometry. Graduate Texts in Mathematics. Springer-Verlag, New York, 1995
Faugère, J.-C.: A new efficient algorithm for computing Gröbner bases (F 4). J. Pure Appl. Algebra, 139(1–3), 61–88 (1999) Proceedinds of MEGA’98
Faugère, J.-C., Gianni, P., Lazard, D., Mora, T.: Efficient computation of zero-dimensional Gröbner bases by change of ordering. J. Symbolic Comput. 16(4), 329–344 (1993)
Fiduccia, C. M.: On obtaining upper bounds on the complexity of matrix multiplication. In: Complexity of computer computations (Proc. Sympos., IBM Thomas J. Watson Res. Center, Yorktown Heights, N.Y., 1972), Plenum, New York, 1972, pp. 31–40, 187–212
Fiduccia, C. M.: On the algebraic complexity of matrix multiplication. PhD thesis, Brown Univ., Providence, RI, Center Comput. Inform. Sci., Div. Engin., 1973
Gaudry, P.: Algorithmique des courbes hyperelliptiques et applications à la cryptologie. PhD thesis, École polytechnique, 2000
Gaudry, P., Schost, É.: Modular equations for hyperelliptic curves. Technical report, École polytechnique, 2002
Giusti, M., Heintz, J., Hägele, K., Morais, J. E., Pardo, L. M., Montaña, J. L.: Lower bounds for Diophantine approximations. J. Pure Appl. Algebra 117/118, 277–317 (1997), Algorithms for algebra (Eindhoven, 1996)
Giusti, M., Heintz, J., Morais, J. E., Morgenstern, J., Pardo, L. M.: Straight-line programs in geometric elimination theory. J. Pure Appl. Algebra 124, 101–146 (1998)
Giusti, M., Lecerf, G., Salvy, B.: A Gröbner free alternative for polynomial system solving. J. Complexity 17(1), 154–211 (2001)
Göttfert, R., Niederreiter., H.: On the minimal polynomial of the product of linear recurring sequences. Finite Fields and their Applications 1(2), 204–218 (1995), Special issue dedicated to Leonard Carlitz
Gröbner, W.: La théorie des idéaux et la géométrie algébrique. In: Deuxième Colloque de Géométrie Algébrique, Liège, 1952, Georges Thone, Liège, 1952, pp. 129–144
Hopcroft, J., Musinski, J.: Duality applied to the complexity of matrix multiplication and other bilinear forms. SIAM J. Comput. 2, 1973
Kaltofen, E.: Analysis of Coppersmith’s block Wiedemann algorithm for the parallel solution of sparse linear systems. Math. Comput. 64(210), 777–806 (1995)
Kaltofen, E., Corless, R. M., Jeffrey, D.J.: Challenges of symbolic computation: my favorite open problems. J. Symbolic Comput. 29(6), 891–919 (2000)
Kaminski, M., Kirkpatrick, D. G., Bshouty, N. H.: Addition requirements for matrix and transposed matrix products. J. Algorithms 9(3), 354–364 (1988)
Kreuzer, M., Robbiano, L.: Computational commutative algebra. 1. Springer-Verlag, Berlin, 2000
Kronecker, L.: Grundzüge einer arithmetischen Theorie der algebraischen Grössen. Journal für die reine und angewandte Mathematik 92, 1–122 (1882)
Kunz, E.: Kähler differentials. Vieweg advanced lectures in Mathematics. Friedr. Vieweg & Sohn, Braunschweig, 1986
Kurosh, A.: Cours d’algèbre supérieure. Éditions Mir, Moscou, 1973
Lang, S.: Introduction to algebraic geometry. Interscience Publishers, New York, 1958
Lang, S.: Algebra, Volume 211 of Graduate Texts in Mathematics. Springer-Verlag, New York, third edition, 2002
Lazard, D.: Solving zero-dimensional algebraic systems. J. Symbolic Comput. 13, 117–133 (1992)
Lazard, D., Valibouze, A.: Computing subfields: reverse of the primitive element problem. In: Computational algebraic geometry (Nice, 1992), Birkhäuser Boston, Boston, MA, 1993, pp. 163–176
Lecerf, G.: Une alternative aux méthodes de réécriture pour la résolution des systèmes algébriques. PhD thesis, École polytechnique, 2001
Lecerf, G.: Quadratic Newton iteration for systems with multiplicity. J. FoCM 2(3), 247–293 (2002)
Lecerf, G.: Computing the equidimensional decomposition of an algebraic closed set by means of lifting fibers. J. Complexity, 2003. To appear
Little, J.: A key equation and the computation of error values for codes from order domains. Available at http://arXiv.org/math.AC/0303299, 2003
Macaulay, F. S.: The Algebraic Theory of Modular Systems. Cambridge University Press, 1916
Mallat, S.: Foveal detection and approximation for singularities. Applied and Computational Harmonic Analysis, 2003. To appear
Marinari, M. G., Mora, T., Möller, H. M.: Gröbner bases of ideals defined by functionals with an application to ideals of projective points. Applicable Algebra in Engineering, Communication and Computing 4, 103–145 (1993)
Massey, J. L.: Shift-register synthesis and BCH decoding. IEEE Transactions on Information Theory, IT-15, 122–127, 1969
Mourrain, B.: Isolated points, duality and residues. J. Pure Appl. Algebra 117/118, 469–493 (1997) Algorithms for algebra (Eindhoven, 1996)
Mourrain, B., Pan, V. Y.: Solving special polynomial systems by using structured matrices and algebraic residues. In: Foundations of computational mathematics (Rio de Janeiro, 1997), Springer, Berlin, 1997, pp. 287–304
Mourrain, B., Pan, V. Y.: Asymptotic acceleration of solving multivariate polynomial systems of equations. In: Proceedings STOC, ACM Press, 1998, pp. 488–496
Mourrain, B., Pan, V. Y.: Multivariate polynomials, duality, and structured matrices. J. Complexity 16(1), 110–180 (2000)
Mourrain, B., Pan, V. Y., Ruatta, O.: Accelerated solution of multivariate polynomial systems of equations. SIAM J. Comput. 32(2), 435–454 (2003)
Nakai, Y.: High order derivations. I. Osaka J. Math. 7, 1–27 (1970)
Oberst, U.: The construction of Noetherian operators. J. Algebra 222(2), 595–620 (1999)
Osborn, H.: Modules of differentials. II. Math. Ann. 175, 146–158 (1968)
Paterson, M. S., Stockmeyer, L. J.: On the number of nonscalar multiplications necessary to evaluate polynomials. SIAM J. Comput. 2(1), 60–66, March 1973
Penfield, Jr. P., Spencer, R., Duinker, S.: Tellegen’s theorem and electrical networks. The M.I.T. Press, Cambridge, Mass.-London, 1970
Rouillier, F.: Solving zero-dimensional systems through the Rational Univariate Representation. Applicable Algebra in Engineering, Communication and Computing 9(5), 433–461 (1999)
Saito, M., Sturmfels, B., Takayama, N.: Gröbner deformations of hypergeometric differential equations. Springer-Verlag, Berlin, 2000
Samuel, P.: Théorie algébrique des nombres. Hermann, 1971
Scheja, G., Storch, U.: Über Spurfunktionen bei vollständigen Durchschnitten. Journal für die reine und angewandte Mathematik 278/279, 174–190 (1975)
Schost, É.: Sur la résolution des systèmes polynomiaux à paramètres. PhD thesis, École polytechnique, 2000
Schwartz, J. T.: Fast probabilistic algorithms for verification of polynomial identities. J. ACM 27(4), 701–717, October 1980
Shoup, V.: Fast construction of irreducible polynomials over finite fields. J. Symbolic Comput. 17(5), 371–391 (1994)
Shoup, V.: Efficient computation of minimal polynomials in algebraic extensions of finite fields. In: Proceedings of the 1999 International Symposium on Symbolic and Algebraic Computation (Vancouver, BC), New York, 1999, pp. 53–58 ACM
Strassen, V.: Gaussian elimination is not optimal. Numer. Math. 13, 354–356 (1969)
Tellegen, B.: A general network theorem, with applications. Philips Research Reports 7, 259–269 (1952)
Thiong~Ly., J.-A.: Note for computing the minimum polynomial of elements in large finite fields. In: Coding theory and applications (Toulon, 1988), Volume 388 of Lecture Notes in Comput. Sci., Springer, New York, 1989, pp. 185–192
von~zur Gathen, J., Gerhard, J.: Modern computer algebra. Cambridge University Press, New York, 1999
Wiedemann, D.: Solving sparse linear equations over finite fields. IEEE Transactions on informations theory IT-32, 54–62, 1986
Zippel, R.: Probabilistic algorithms for sparse polynomials. In: Symbolic and algebraic computation, number~72 in Lecture Notes in Computer Science, Berlin, 1979. Springer. Proceedings EUROSAM ‘79, Marseille, 1979, pp. 216–226