Farming Sparus aurata (Teleostei: Sparidae) in marsh ponds: trophic characterization and trace metal accumulation

Marine Environmental Research - Tập 188 - Trang 106007 - 2023
J.M. Guerra-García1, S. Calero-Cano2, I. Donázar-Aramendía1, Giráldez I3, Morales E3, P. Arechavala-Lopez4, J.L. Cervera-Currado2
1Laboratorio de Biología Marina, Departamento de Zoología, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes 6, 41012 Sevilla, Spain
2Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Campus de Excelencia Internacional del Mar (CEIMAR), Universidad de Cádiz, Avenida República Saharaui s/n, 11510, Puerto Real, Spain
3Dpto. Química “Prof. J.C. Vilchez Martín”, Facultad de Ciencias Experimentales Research Center in Technology of Products and Chemical Processes, Pro2TecS Universidad de Huelva, Avda. Fuerzas Armadas, s/n, 21071, Huelva, Spain
4Mediterranean Institute of Advanced Studies (IMEDEA-CSIC), C/Miquel Marquès 21, 07190, Esporles, Spain

Tài liệu tham khảo

Abadi, 2015, Comparative investigation of heavy metal, trace, and macro element contents in commercially valuable fish species harvested off from the Persian Gulf, Environ. Sci. Pollut. Res., 22, 6670, 10.1007/s11356-014-3852-1 Abdou, 2017, Environmental assessment of seabass (Dicentrarchus labrax) and seabream (Sparus aurata) farming from a life cycle perspective: a case study of a Tunisian aquaculture farm, Aquaculture, 471, 204, 10.1016/j.aquaculture.2017.01.019 Abrantes, 2014, Stable isotope-based community metrics as a tool to identify patterns in food web structure in east African estuaries, Funct. Ecol., 28, 270, 10.1111/1365-2435.12155 Ahmed, 2019, Global aquaculture productivity, environmental sustainability, and climate change adaptability, Environ. Manag., 63, 159, 10.1007/s00267-018-1117-3 Alasalvar, 2002, Comparative quality assessment of cultured and wild sea bream (Sparus aurata) stored in ice, J. Agric. Food Chem., 50, 2039, 10.1021/jf010769a Amanieu, 1973, Ecologie et exploitation des étangs et lagunes saumâtres du littoral français, Ann. Soc. Roy. Zool. Belg., 103, 79 Anderson, 2005 Andolina, 2020, Vegetated habitats trophically support early development stages of a marine migrant fish in a coastal lagoon, Estuar. Coast, 43, 424, 10.1007/s12237-019-00683-2 Anonymous, 1996 Ardizzone, 1988, Management of coastal lagoon fisheries and aquaculture in Italy, 1 Arechavala-Lopez, 2012, Post-escape dispersion of farmed seabream (Sparus aurata L.) and recaptures by local fisheries in the Western Mediterranean Sea, Fish. Res., 121, 126, 10.1016/j.fishres.2012.02.003 Arechavala-Lopez, 2020, Linking stocking densities and feeding strategies with social and individual stress responses on gilthead seabream (Sparus aurata), Physiol. Behav., 213, 10.1016/j.physbeh.2019.112723 Arechavala‐Lopez, 2013, Differentiating the wild or farmed origin of Mediterranean fish: a review of tools for sea bream and sea bass, Rev. Aquacult., 5, 137, 10.1111/raq.12006 Arias, 1980, Growth, food and reproductive habits of sea bream (Sparus aurata L.) and sea bass (Dicentrarchus labrax L.) in the esteros (fish ponds) of Cadiz, Invest. Pesq., 44, 59 Arias, 1993, Acuicultura en las salinas de la Bahía de Cádiz, 49 Arias, 1994, Structure and production of the benthic macroinvertebrate community in a shallow lagoon in the Bay of Cadiz, Mar. Ecol. Prog. Ser., 115, 151, 10.3354/meps115151 Ashley, 2007, Fish welfare: current issues in aquaculture, Appl. Anim. Behav. Sci., 104, 199, 10.1016/j.applanim.2006.09.001 Athearn, 2012, Variability in habitat value of commercial salt production ponds: implications for waterbird management and tidal marsh restoration planning, Hydrobiologia, 697, 139, 10.1007/s10750-012-1177-y 2021 1985 Aydin, 2015, Trace metals in tissues of the six most common fish species in the Black Sea, Turkey, Food Addit. Contam. B, 8, 25, 10.1080/19393210.2014.949873 Baker, 2020, Fisheries rely on threatened salt marshes, Science, 370, 670, 10.1126/science.abe9332 Bjørndal, 2017, Market integration between wild and farmed seabream and seabass in Spain, Appleseeds, 49, 4567 Bodur, 2018, Morphological discrimination of farmed and wild gilthead sea bream (Sparus aurata L. 1753) populations of North-East Mediterranean, Pakistan J. Agric. Sci., 55, 941 1991, BOE No, 195, 27153 2006, BOE No, 275, 40287 Bosch, 2016, Heavy metals in marine fish meat and consumer health: a review, J. Sci. Food Agric., 96, 32, 10.1002/jsfa.7360 Bouchoucha, 2019, Trace element contamination in fish impacted by bauxite red mud disposal in the Cassidaigne canyon (NW French Mediterranean), Sci. Total Environ., 690, 1626, 10.1016/j.scitotenv.2019.06.474 Cañavate, 2015, Flushing-related changes of phytoplankton seasonal assemblages in marsh ponds of the warm temperate Guadalquivir river estuary (SW Spain), Hydrobiologia, 744, 15, 10.1007/s10750-014-2051-x Canli, 2003, The relationships between heavy metal (Cd, Cr, Cu, Fe, Pb, Zn) levels and the size of six Mediterranean fish species, Environ. Pollut., 121, 129, 10.1016/S0269-7491(02)00194-X Carpene, 1998, Biochemical differences in lateral muscle of wild and farmed gilthead sea bream (Sparus aurata L.), Fish Physiol. Biochem., 19, 229, 10.1023/A:1007742328964 Castritsi-Catharios, 2015, Comparison of heavy metal concentrations in fish samples from three fish farms (Eastern Mediterranean) utilizing antifouling paints, Toxicol. Environ. Chem., 97, 116, 10.1080/02772248.2014.943226 Çelik, 2005, Zinc and cooper content in marine fish samples collected from the eastern Mediterranean Sea, Eur. Food Res. Technol., 220, 37, 10.1007/s00217-004-1104-1 Çelik, 2004, Determination of the lead and cadmium burden in some northeastern Atlantic and Mediterranean fish species by DPSAV, Eur. Food Res. Technol., 218, 298, 10.1007/s00217-003-0840-y Chaouch, 2013, Diet composition and food habits of Diplodus puntazzo (sparidae) from the Gulf of gabès (central mediterranean), J. Mar. Biol. Assoc. U. K., 93, 2257, 10.1017/S0025315413000805 Chaoui, 2005, Alimentation et condition de la dorade Sparus aurata (Teleostei Sparidae) dan la lagune du Mellah (Algérie Nord-Est), Cah. Biol. Mar., 46, 221 Claret, 2016, Does information affect consumer liking of farmed and wild fish?, Aquaculture, 454, 157, 10.1016/j.aquaculture.2015.12.024 Clarke, 2006 Clement, 1986, L'aquaculture dans les marals. I'exemple des marais saumatres endigues de la côte atlantique, 773 2001 Cresson, 2017, Underestimation of chemical contamination in marine fish muscle tissue can be reduced by considering variable wet: dry weight ratios, Mar. Pollut. Bull., 123, 279, 10.1016/j.marpolbul.2017.08.046 Cretì, 2010, Heavy metal bioaccumulation and metallothionein content in tissues of the sea bream Sparus aurata from three different fish farming systems, Environ. Monit. Assess., 165, 321, 10.1007/s10661-009-0948-z d'Orbcastel, 2009, Towards environmentally sustainable aquaculture: comparison between two trout farming systems using life cycle assessment, Aquacult. Eng., 40, 113, 10.1016/j.aquaeng.2008.12.002 de Andrés, 2018, Ecosystem services and urban development in coastal Social-Ecological Systems: the Bay of Cádiz case study, Ocean Coast Manag., 154, 155, 10.1016/j.ocecoaman.2018.01.011 Del Coco, 2009, Comparison among different gilthead sea bream (Sparus aurata) farming systems: activity of intestinal and hepatic enzymes and 13C-NMR analysis of lipids, Nutrients, 1, 291, 10.3390/nu1020291 Deng, 2018 Donázar-Aramendía, 2019, Human pressures on two estuaries of the Iberian Peninsula are reflected in food web structure, Sci. Rep., 9, 10.1038/s41598-019-47793-2 Drake, 1997, The effect of aquaculture practices on the benthic macroinvertebrate community of a lagoon system in the Bay of Cadiz (southwestern Spain), Estuaries, 20, 677, 10.2307/1352243 Duffill Telsnig, 2019, Estimating contributions of pelagic and benthic pathways to consumer production in coupled marine food webs, J. Anim. Ecol., 88, 405, 10.1111/1365-2656.12929 Dural, 2006, Bioaccumulation of some heavy metals in different tissues of Dicentrarchus labrax L., 1758, Sparus aurata L., 1758 and Mugil cephalus L., 1758 from the Çamlik Lagoon of the Eastern Cost of Mediterranean (Turkey), Environ. Monit. Assess., 118, 65, 10.1007/s10661-006-0987-7 Dural, 2007, Investigation of heavy metal levels in economically important fish species captured from the Tuzla lagoon, Food Chem., 102, 415, 10.1016/j.foodchem.2006.03.001 Dural, 2011, Accumulation of some heavy metals in Hysterothylacium aduncum (nematoda) and its host sea bream, Sparus aurata (sparidae) from north-eastern mediterranean sea (iskenderun bay), Environ. Monit. Assess., 174, 147, 10.1007/s10661-010-1445-0 2001 2006 2008, EC No. 629/2008 of 2 July 2008 amending Regulation (EC) No. 1881/2006 setting maximum levels for certain contaminants in foodstuffs, Off. J. Eur. Union, 173, 6 2014 2015 2015 Erkan, 2007, Proximate composition and mineral contents in aquaculture sea bass (Dicentrarchus labrax), sea bream (Sparus aurata) analyzed by ICP-MS, Food Chem., 102, 721, 10.1016/j.foodchem.2006.06.004 2019 Feng, 2015, Utilization of exotic Spartina alterniflora by fish community in the mangrove ecosystem of Zhangjiang Estuary: evidence from stable isotope analyses, Biol. Invasions, 17, 2113, 10.1007/s10530-015-0864-9 Fernández-Rodríguez, 2018, Multivariate factor analysis reveals the key role of management in integrated multitrophic aquaculture of veta la Palma (Spain), Aquaculture, 495, 484, 10.1016/j.aquaculture.2018.06.032 Ferrón, 2007, Seasonal study of dissolved CH4, CO2 and N2O in a shallow tidal system of the bay of Cádiz (SW Spain), J. Mar. Syst., 66, 244, 10.1016/j.jmarsys.2006.03.021 Ferrón, 2009, Benthic fluxes in a tidal salt marsh creek affected by fish farm activities: Río San Pedro (Bay of Cádiz, SW Spain), Mar. Chem., 113, 50, 10.1016/j.marchem.2008.12.002 Flos, 2002, Influence of marketing and different land-based systems on gilthead sea bream (Sparus aurata) quality, Aquacult. Int., 10, 189, 10.1023/A:1022100928523 France, 1995, Carbon-13 enrichment in benthic compared to planktonic algae: foodweb implications, Mar. Ecol. Prog. Ser., 124, 307, 10.3354/meps124307 2015 Gamito, 1989, The benthic macrofauna of some water reservoirs of salt-pans from Ria Formosa (Portugal), 639 Garcia, 2018, Changes in food web structure of fish assemblages along a river-to-ocean transect of a coastal subtropical system, Mar. Freshw. Res. Gedan, 2009, Centuries of human-driven change in salt marsh ecosystems, Ann. Rev. Mar. Sci, 1, 117, 10.1146/annurev.marine.010908.163930 Gillanders, 2001, Trace elements in otoliths of the two-banded bream from a coastal region in the south-west Mediterranean: are there differences among locations?, J. Fish. Biol., 59, 350, 10.1111/j.1095-8649.2001.tb00135.x Giménez, 2017, Diet of bottlenose dolphins (Tursiops truncatus) from the Gulf of Cadiz: insights from stomach content and stable isotope analyses, PLoS One, 12, 1, 10.1371/journal.pone.0184673 González-Gordillo, 2003, Recruitment patterns of decapod crustacean megalopae in a shallow inlet (SW Spain) related to life history strategies, Estuar. Coast Shelf Sci., 56, 593, 10.1016/S0272-7714(02)00209-3 González-Ortegón, 2018, Sources and coastal distribution of dissolved organic matter in the Gulf of Cadiz, Sci. Total Environ., 630, 1583, 10.1016/j.scitotenv.2018.02.293 Gopi, 2019, Isotopic and elemental profiling to trace the geographic origins of farmed and wild-caught Asian seabass (Lates calcarifer), Aquaculture, 502, 56, 10.1016/j.aquaculture.2018.12.012 Government of Canada, 2020 Grigorakis, 2002, Comparison of wild and cultured gilthead sea bream (Sparus aurata); composition, appearance and seasonal variations, Int. J. Sci. Technol., 37, 477 Grigorakis, 2003, Organoleptic andvolatile aroma compounds comparison of wild and cultured gilthead sea bream: sensory differences and possible chemical basis, Aquaculture, 225, 109, 10.1016/S0044-8486(03)00283-7 Guérin, 2011, Determination of 20 trace elements in fish and other seafood from the French market, Food Chem., 127, 934, 10.1016/j.foodchem.2011.01.061 Guerra-García, 2023, Assessment of elemental composition in commercial fish of the bay of Cádiz, southern iberian peninsula, Mar. Pollut. Bull., 187, 10.1016/j.marpolbul.2022.114504 Gutiérrez, 1996, Distribución de las facies recientes en los fondos de la Bahía de Cádiz, Geogaceta, 21, 155 Iamiceli, 2015, Metals in Mediterranean aquatic species, Mar. Pollut. Bull., 94, 278, 10.1016/j.marpolbul.2015.02.034 Izquierdo, 1997, Speciation of heavy metals in sediments from salt marshes on the southern Atlantic coast of Spain, Mar. Pollut. Bull., 34, 123, 10.1016/S0025-326X(96)00059-8 Jackson, 2011, Comparing isotopic niche widths among and within communities: SIBER - stable Isotope Bayesian Ellipses in R, J. Anim. Ecol., 80, 595, 10.1111/j.1365-2656.2011.01806.x Jackson, 2012, Population-level metrics of trophic structure based on stable isotopes and their application to invasion ecology, PLoS One, 7, 1, 10.1371/journal.pone.0031757 Jiménez-Prada, 2018, Crustacean amphipods from marsh ponds: a nutritious feed resource with potential for application in Integrated Multi-Trophic Aquaculture, PeerJ, 6, 10.7717/peerj.4194 Jiménez-Prada, 2020, Aquaculture waste as food for amphipods: the case of Gammarus insensibilis in marsh ponds from southern Spain, Aquacult. Int., 29, 1 Jovičić, 2015, Importance of standardized reporting of elemental concentrations in fish tissues, Hum. Ecol. Risk Assess., 21, 2170, 10.1080/10807039.2015.1032885 Joyeux, 2004, Trace metal contamination in estuarine fishes from Vitória Bay, ES, Brazil, Braz. Arch. Biol. Technol., 47, 765, 10.1590/S1516-89132004000500012 Kalantzi, 2016, Metals in tissues of seabass and seabream reared in sites with oxic and anoxic substrata and risk assessment for consumers, Food Chem., 194, 659, 10.1016/j.foodchem.2015.08.072 Kargın, 1996, Seasonal changes in levels of heavy metals in tissues of Mullus barbatus and Sparus aurata collected from Iskenderun Gulf (Turkey), Water Air Soil Pollut., 90, 557, 10.1007/BF00282669 Korkmaz, 2017, Heavy metal levels in muscle tissues of Solea solea, Mullus barbatus, and Sardina pilchardus marketed for consumption in Mersin, Turkey, Water Air Soil Pollut., 228, 1, 10.1007/s11270-017-3503-5 Kumar, 2021, Assessment of potential human health risk due to heavy metal contamination in edible finfish and shellfish collected around Ennore coast, India, Environ. Sci. Pollut. Res., 28, 8151, 10.1007/s11356-020-10764-6 Labourg, 1976, Les réservoirs à Poissons du bassin d'Arcachon et l'évage extensif de Poissons euryhalins (muges, anguilles, bars, daurades), Bulletin de la Station Biologique d'Arcachon, 28, 1 Layman, 2007, Can stable isotope ratios provide for community-wide measures of trophic structure, Ecology, 88, 42, 10.1890/0012-9658(2007)88[42:CSIRPF]2.0.CO;2 Layman, 2007, Niche width collapse in a resilient top predator following ecosystem fragmentation, Ecol. Lett., 10, 937, 10.1111/j.1461-0248.2007.01087.x Lenas, 2011, Fatty acid profile of wild and farmed gilthead sea bream (Sparus aurata), J. Verbraucherschutz Lebensmittelsicherheit, 6, 435, 10.1007/s00003-011-0695-2 López-Mas, 2021, Farmed or wild fish? Segmenting European consumers based on their beliefs, Aquaculture, 532, 10.1016/j.aquaculture.2020.735992 Lounas, 2021, Heavy metal concentrations in wild and farmed gilthead sea bream from southern Mediterranean Sea—human health risk assessment, Environ. Sci. Pollut. Res., 1 Lourenço, 2012, Elemental composition of four farmed fish produced in Portugal, Int. J. Food Sci. Nutr., 63, 853, 10.3109/09637486.2012.681632 Lozano, 2017, Legislación de la Unión Europea sobre metales pesados en alimentos marinos, Vieraea, 45, 381, 10.31939/vieraea.2017.45.22 2000 Marengo, 2018, Comparison of elemental composition in two wild and cultured marine fish and potential risks to human health, Ecotoxicol. Environ. Saf., 158, 204, 10.1016/j.ecoenv.2018.04.034 Matich, 2017, Trophic redundancy among fishes in an East African nearshore seagrass community inferred from stable-isotope analysis, J. Fish. Biol., 91, 490, 10.1111/jfb.13354 Matos, 2017, Sustainability vs. Quality in gilthead seabream (Sparus aurata L.) farming: are trade‐offs inevitable?, Rev. Aquacult., 9, 388, 10.1111/raq.12144 Matthews, 2004, A critical evaluation of intrapopulation variation of δ13C and isotopic evidence of individual specialization, Oecologia, 140, 361, 10.1007/s00442-004-1579-2 Micheline, 2019, Levels of Pb, Cd, Hg and as in fishery products from the Eastern Mediterranean and human health risk assessment due to their consumption, Int. J. Environ. Res., 13, 443, 10.1007/s41742-019-00185-w Minello, 2003, Salt marshes as nurseries for nekton: testing hypotheses on density, growth and survival through meta-analysis, Mar. Ecol. Prog. Ser., 246, 39, 10.3354/meps246039 Minganti, 2010, Trace elements in farmed and wild gilthead seabream, Sparus aurata, Mar. Pollut. Bull., 60, 2022, 10.1016/j.marpolbul.2010.07.023 Miró, 2020, Environmental factors affecting the nursery function for fish in the main estuaries of the Gulf of Cadiz (south-west Iberian Peninsula), Sci. Total Environ., 737, 10.1016/j.scitotenv.2020.139614 Mnari, 2007, Fatty acids in muscles and liver of Tunisian wild and farmed gilthead sea bream, Sparus aurata, Food Chem., 100, 1393, 10.1016/j.foodchem.2005.11.030 Moreno Rojas, 2010, The use of stable isotope ratio analyses to discriminate wild and farmed gilthead seabream (Sparus aurata), Rapid Commun. Mass Spectrom., 24, 1457 Morris, 2015, δ15N of estuarine fishes as a quantitative indicator of urbanization, Ecol. Indicat., 56, 41, 10.1016/j.ecolind.2015.03.028 Morrison, 2007, Authenticating production origin of gilthead sea bream (Sparus aurata) by chemical and isotopic fingerprinting, Lipids, 42, 537, 10.1007/s11745-007-3055-3 Muñoz, 2000, Total and inorganic arsenic in fresh and processed fish products, J. Agric. Food Chem., 48, 4369, 10.1021/jf000282m Muñoz-Pérez, 1994, 151 Nauen, 1983, 102 Nikolaou, 2014, Fish farming and anti-fouling paints: a potential source of Cu and Zn in farmed fish, Aquaculture Environ. Inter., 5, 163, 10.3354/aei00101 Olmedo, 2013, Determination of essential elements (copper, manganese, selenium and zinc) in fish and shellfish samples. Risk and nutritional assessment and mercury–selenium balance, Food Chem. Toxicol., 62, 299, 10.1016/j.fct.2013.08.076 Orban, 2003, Differentiation in the lipid quality of wild and farmed seabass (Dicentrarchus labrax) and gilthead sea bream (Sparus aurata), J. Food Sci., 68, 128, 10.1111/j.1365-2621.2003.tb14127.x Ordinance, 2008, Ordinance setting maximum levels for certain contaminants in foodstuffs, Off. Gazette, 154, 4198 Ozuni, 2018, Heavy metal concentration in farmed Sea Bream (Sparus aurata) Pita, 2002, Feeding habits of the gilthead seabream (Sparus aurata) from the Ria Formosa (southern Portugal) as compared to the black seabream (Spondyliosoma cantharus) and the annular seabream (Diplodus annularis), J. Appl. Ichthyol., 18, 81, 10.1046/j.1439-0426.2002.00336.x Post, 2007, Proximate structural mechanisms for variation in food-chain length, Oikos, 116, 775 Renieri, 2019, Cadmium, lead and mercury in muscle tissue of gilthead seabream and seabass: risk evaluation for consumers, Food Chem. Toxicol., 124, 439, 10.1016/j.fct.2018.12.020 Rogdakis, 2011, Comparative morphology of wild, farmed and hatchery released gilthead sea bream (Sparus aurata) in western Greece, Int. J. Fish. Aquacult., 3, 1 Rosecchi, 1985, L’alimentation de Diplodus annularis, Diplodus sargus, Diplodus vulgaris et Sparus aurata (Pisces, Sparidae) dans le Golfe du Lion et les lagunes littorales, Rev. Trav. Inst. Peches Marit., 49, 125 Rubio, 2011, Trace elements and metals in farmed sea bass and gilthead bream from Tenerife Island, Spain, J. Food Protect., 74, 1938, 10.4315/0362-028X.JFP-11-118 Sánchez-Lamadrid, 2004, Effectiveness of releasing gilthead sea bream (Sparus aurata, L.) for stock enhancement in the bay of Cádiz, Aquaculture, 231, 135, 10.1016/j.aquaculture.2003.08.015 Serrano, 2007, Stable isotope determination in wild and farmed gilthead sea bream (Sparus aurata) tissues from the western Mediterranean, Chemosphere, 69, 1075, 10.1016/j.chemosphere.2007.04.034 Šimat, 2012, Differences in chemical, physical and sensory properties during shelf life assessment of wild and farmed gilthead sea bream (Sparus aurata, L.), Appl. Ichthyol., 28, 95, 10.1111/j.1439-0426.2011.01883.x Tacon, 2020, Trends in global aquaculture and aquafeed production: 2000–2017, Rev. Fish. Sci. Aquaculture, 28, 43, 10.1080/23308249.2019.1649634 Tancioni, 2003, Locality-specific variation in the feeding of Sparus aurata L.: evidence from two Mediterranean lagoon systems, Estuar. Coast Shelf Sci., 57, 469, 10.1016/S0272-7714(02)00376-1 Tovar, 2000, Environmental implications of intensive marine aquaculture in earthen ponds, Mar. Pollut. Bull., 40, 981, 10.1016/S0025-326X(00)00040-0 Türkmen, 2005, Heavy metals in three commercially valuable fish species from iskenderun bay, northern east mediterranean sea, Turkey, Food Chem., 91, 167, 10.1016/j.foodchem.2004.08.008 Türkmen, 2010, Metals in tissues of fish from yelkoma lagoon, northeastern mediterranean, Environ. Monit. Assess., 168, 223, 10.1007/s10661-009-1106-3 Türkmen, 2012, Investigation of metals in tissues of fish species from Akyatan Lagoon, Fresenius Environ. Bull., 21, 3562 Türkmen, 2016, Determination of metals in tissues of fish species from Hurmabogazi Lagoon, Ind. J. Geo-Mar. Sci., 45, 277 Underwood, 1997 Underwood, 2002 2011 Uysal, 2008, The determination of heavy metal accumulation ratios in muscle, skin and gills of some migratory fish species by inductively coupled plasma-optical emission spectrometry (ICP-OES) in Beymelek Lagoon (Antalya/Turkey), Microchem. J., 90, 67, 10.1016/j.microc.2008.03.005 Vázquez-Pinillos, 2021, Territorial impacts of sea-level rise in marsh environments. The case of the Bay of Cádiz, Spain, Cuadernos de Invest. Geogr., 47, 523, 10.18172/cig.4531 Vicente-Martorell, 2009, Bioavailability of heavy metals monitoring water, sediments and fish species from a polluted estuary, J. Hazard Mater., 162, 823, 10.1016/j.jhazmat.2008.05.106 Vidal, 2005, Study of the dynamic behaviour of the Sancti Petri Channel, southwest coast of Spain, Cienc. Mar., 31, 617, 10.7773/cm.v31i4.25 Walton, 2015, A model for the future: ecosystem services provided by the aquaculture activities of Veta la Palma, Southern Spain, Aquaculture, 448, 382, 10.1016/j.aquaculture.2015.06.017 Wang, 2018, Spartina alterniflora invasion affects soil carbon in a C3 plant-dominated tidal marsh, Sci. Rep., 8, 99 1989, Heavy metals environmental aspects Yigit, 2020, Health risks associated with trace metals in gilthead seabream (Sparus aurata) from copper alloy and antifouling-coated polymer nets, Thalassas, 36, 95, 10.1007/s41208-019-00186-8 Yildiz, 2008, Mineral composition in fillets of sea bass (Dicentrarchus labrax) and sea bream (Sparus aurata): a comparison of cultured and wild fish, J. Appl. Ictiol., 24, 589, 10.1111/j.1439-0426.2008.01097.x Yildiz, 2008, Effects of differences in diet and seasonal changes on the fatty acid composition in fillets from farmed and wild sea bream (Sparus aurata L.) and sea bass (Dicentrarchus labrax L.), Int. J. Food Sci. Technol., 43, 853, 10.1111/j.1365-2621.2007.01526.x Yılmaz, 2005, Comparison of heavy metal levels of grey mullet (Mugil cephalus L.) and sea bream (Sparus aurata L.) caught in iskenderun bay (Turkey), Turk. J. Vet. Anim. Sci., 29, 257 Yúfera, 2010, Traditional polyculture in" Esteros" in the Bay of Cádiz (Spain). Hopes and expectancies for the prevalence of a unique activity in Europe, Aquacult. Europe, 35, 22 Žvad Rožič, 2014, Element levels in cultured and wild sea bass (Dicentrarchus labrax) and gilthead sea bream (Sparus aurata) from the Adriatic Sea and potential risk assessment, Environ. Geochem. Healath, 36, 19, 10.1007/s10653-013-9516-0