Faraday wave instability characteristics of a single droplet in ultrasonic atomization and the sub-droplet generation mechanism

Experimental Thermal and Fluid Science - Tập 134 - Trang 110618 - 2022
Songmei Yuan1, Yu Zhang1, Yang Gao1
1Beihang University, No. 37, Xueyuan Road, Beijing 100191, People’s Republic of China

Tài liệu tham khảo

Gogate, 2015, 30–The use of ultrasonic atomization for encapsulation and other processes in food and pharmaceutical manufacturing, Power Ultrasonics, 911–935, 10.1016/B978-1-78242-028-6.00030-2 Luz, P.P., Pires, A.M., Serra, O.A., A low cost ultrasonic spray dryer to produce spherical microparticles from polymeric matrices. Quim. Nova 30, 1744–1746 (2007), http://dx.doi.org/ 10.1590/S0100-40422007000700041. Dalmoro, 2012, Intensifying the microencapsulation process: ultrasonic atomization as an innovative approach, Eur. J. Pharm. Biopharm., 80, 471, 10.1016/j.ejpb.2012.01.006 Klaypradit, 2008, Fish oil encapsulation with chitosan using ultrasonic atomizer, Lebenson Wiss Technol., 41, 1133, 10.1016/j.lwt.2007.06.014 Legako, 2010, Effect of spray nozzle design on fish oil-whey protein microcapsule properties, J. Food Sci., 75, E394, 10.1111/j.1750-3841.2010.01708.x Alvarez, 2008, Rapid generation of protein aerosols and nanoparticles via surface acoustic wave atomization, Nanotechnology, 19, 8, 10.1088/0957-4484/19/45/455103 Majumder, 2010, Insights into the physics of spray coating of SWNT films, Chem. Eng. Sci., 65, 2000, 10.1016/j.ces.2009.11.042 Cubadda, 2003, Chromium determination in foods by quadrupole inductively coupled plasma-mass spectrometry with ultrasonic nebulization, Food Chem., 81, 463, 10.1016/S0308-8146(03)00002-5 Cubadda, 2005, Determination of cadmium, lead, iron, nickel and chromium in selected food matrices by plasma spectrometric techniques, Microchem. J., 79, 91, 10.1016/j.microc.2004.10.007 Qiu, 2008, Preparation of nano-hydroxyapatite by novel ultrasonic atomization precipitation method, J. Mater. Eng., 10, 324 Faraday, 1830, On a peculiar class of acoustical figures; and on certain forms assumed by groups of particles upon vibrating elastic surfaces, Proc. R. Soc. Lond. RJ, CD, LA. Observation of Star-Shaped Surface Gravity Waves. Phys. Rev. Lett., 110:094502 (2013). Christiansen, 1992, Ordered capillary-wave states: Quasicrystals, hexagons, and radial waves, Phys. Rev. Lett., 68, 2157, 10.1103/PhysRevLett.68.2157 Crawford, 1993, Hidden symmetries of parametrically forced waves, Nonlinearity, 6, 119, 10.1088/0951-7715/6/2/001 Ew, 1994, Patterns and quasi-patterns in the Faraday experiment, J. Fluid Mech., 278, 123, 10.1017/S0022112094003642 Kumar, 1994, Parametric instability of the interface between two fluids, J. Fluid Mech., 279, 49, 10.1017/S0022112094003812 Zhang, 1996, Square patterns and quasipatterns in weakly damped Faraday waves, Phys. Rev. E, 53, R4283, 10.1103/PhysRevE.53.R4283 Binks, 1997, Nonlinear pattern formation of faraday waves, Phys. Rev. Lett., 78, 4043, 10.1103/PhysRevLett.78.4043 Benjamin, 1954, The stability of the plane free surface of a liquid in vertical periodic motion, P Roy Soc Lond A Mat., 225, 505, 10.1098/rspa.1954.0218 Adou, 2016, Faraday instability on a sphere: Floquet analysis, J Fluid Mech, 805, 591, 10.1017/jfm.2016.542 Miles, 1984, Nonlinear Faraday resonance, J. Fluid Mech., 146, 285, 10.1017/S0022112084001865 Vega, 2004, Phenomenological model of weakly damped Faraday waves and the associated mean flow, Phys. Rev. E, 70, 10.1103/PhysRevE.70.046306 Sindayihebura D, Dobre M, Bolle L. Experimental study of thin liquid film ultrasonic atomization, 4th World Conference on Experimental Heat Transfer, Fluid Mechanics and Thermodynamics.1249-1256 (1997). Yule, 2000, On Droplet Formation from Capillary Waves on a Vibrating Surface, P Roy Soc A-math Phy, 456, 1069, 10.1098/rspa.2000.0551 Lang, 1962, Ultrasonic Atomization of Liquids, J Acoust Soc Am, 34, 6, 10.1121/1.1909020 Deepu, 2018, Dynamics of ultrasonic atomization of droplets, Exp. Therm Fluid Sci., 92, 243, 10.1016/j.expthermflusci.2017.11.021 Meacham, 2005, Droplet formation and ejection from a micromachined ultrasonic droplet generator: Visualization and scaling, Phys. Fluids, 17, 100605, 10.1063/1.1921249 j. W. S. Rayleigh, The Theory of Sound (Dover Publications, New York, 1945), Vol. II, Chap. 20, p. 344. Peskin, 1963, Ultrasonic atomization of liquids, J. Acoust. Soc. Am., 35, 1378, 10.1121/1.1918700 Sindayihebura, 1997, Experimental study of thin liquid film ultrasonic atomization, Fluid Mech. Thermodyn., 1249–1256 Rajan, 2001, Correlations to predict droplet size in ultrasonic atomization, Ultrasonics, 39, 235, 10.1016/S0041-624X(01)00054-3 Ramisetty, 2013, Investigations into ultrasound induced atomization, Ultrason Sonochem, 20, 254, 10.1016/j.ultsonch.2012.05.001 Zhang, 2020, Dynamic behaviors of droplets impacting on ultrasonically vibrating surfaces, Exp. Therm Fluid Sci., 112, 110019, 10.1016/j.expthermflusci.2019.110019 Lecompte, 2008, On the capability of the generalized gamma function to represent spray drop-size distribution, Part. Part. Syst. Charact., 25, 154, 10.1002/ppsc.200701098 Söllner, 1936, The mechanism of the formation of fogs by ultrasonic waves, Trans. Faraday Soc., 32, 1532, 10.1039/TF9363201532 Neppiras, 2002, Cavitation produced by ultrasonics: theoretical conditions for the onset of cavitation, Proc. Phys. Soc., 64(64):1032 Kauer, 2018, Valentina, high-speed imaging of ultrasound driven cavitation bubbles in blind and through holes, Ultrason. Sonochem., 48, 39, 10.1016/j.ultsonch.2018.04.015 Gogate, 2001, Cavitation reactors: efficiency assessment using a model reaction, AICHE J., 47, 2526, 10.1002/aic.690471115 Chakinala, 2007, Intensification of hydroxyl radical production in sonochemical reactors, Ultrason. Sonochem., 14, 509, 10.1016/j.ultsonch.2006.09.001 Zhang, 2021, Investigation of capillary wave, cavitation and droplet diameter distribution during ultrasonic atomization, Exp. Therm Fluid Sci., 120, 110219, 10.1016/j.expthermflusci.2020.110219 Liu, 2019, Experimental investigation on the atomization of a spherical droplet induced by Faraday instability, Exp. Therm Fluid Sci., 100, 311, 10.1016/j.expthermflusci.2018.09.016 F. Liu, N. Kang, Y. Li, Experimental investigation on the spray characteristics of a droplet under sinusoidal inertial force, Fuel 22615 156–162(2018), https://doi. org/10.1016/j.fuel.2018.04.008. James, 2003, Vibration-induced drop atomization and bursting, J Fluid Mech, 476, 1, 10.1017/S0022112002002835 Donnelly, 2004, An experimental study of micron-scale droplet aerosols produced via ultrasonic atomization, Phys. Fluids., 16, 2843, 10.1063/1.1759271 Manor, 2011, Substrate dependent drop deformation and wetting under high frequency vibration, Soft Matter, 7, 7976, 10.1039/c1sm06054f Sarasua, 2021, Energetic study of ultrasonic wettability enhancement, Ultrason. Sonochem., 79, 105768, 10.1016/j.ultsonch.2021.105768 Floquet, 1883, Sur les équations différentielles linéaires à coefficients périodiques, Annales Scientifiques de l'École Normale Supérieure, 12, 47, 10.24033/asens.220 Harkins, 1952 Ebo Adou, 2016, Faraday instability on a sphere: floquet analysis, J Fluid Mech, 805, 591, 10.1017/jfm.2016.542 Hua, 2019, Experimental and numerical study on the effect of dimensionless parameters on the characteristics of droplet atomization caused by periodic inertial force, Fuel, 253, 941, 10.1016/j.fuel.2019.05.083 Goodridge, 1996, Threshold dynamics of singular gravity-capillary waves, Phys Rev Lett., 76, 1824, 10.1103/PhysRevLett.76.1824 Goodridge, 1997, Viscous effects in droplet-ejecting capillary waves, Phys Rev E., 56, 472, 10.1103/PhysRevE.56.472 Stone, 1986, An experimental study of transient effects in the breakup of viscous drops, J Fluid Mech, 173, 131, 10.1017/S0022112086001118 Vukasinovic, 2007, Mechanisms of free-surface breakup in vibration-induced liquid atomization, Phys. Fluids., 19, 012104, 10.1063/1.2434799