Fano–Mukai fourfolds of genus 10 as compactifications of $${\mathbb {C}}^4$$ C 4
Tóm tắt
Từ khóa
Tài liệu tham khảo
Akhiezer, D.N.: Lie Group Actions in Complex Analysis. Aspects of Mathematics, vol. E27. Friedr. Vieweg & Sohn, Braunschweig (1995)
Andreatta, M., Wiśniewski, J.A.: On contractions of smooth varieties. J. Algebraic Geom. 7(2), 253–312 (1998)
Arzhantsev, I., Flenner, H., Kaliman, S., Kutzschebauch, F., Zaidenberg, M.: Flexible varieties and automorphism groups. Duke Math. J. 162(4), 767–823 (2013)
Bourbaki, N.: Lie Groups and Lie Algebras. Chapters 4–6. Elements of Mathematics (Berlin). Springer, Berlin (2002) (Translated from the 1968 French original by Andrew Pressley)
Chriss, N., Ginzburg, V.: Representation Theory and Complex Geometry. Modern Birkhäuser Classics. Birkhäuser, Boston (2010) (Reprint of the 1997 edn.)
Collingwood, D.H., McGovern, W.M.: Nilpotent Orbits in Semisimple Lie Algebras. Van Nostrand Reinhold Mathematics Series. Van Nostrand Reinhold, New York (1993)
Coray, D.F., Tsfasman, M.A.: Arithmetic on singular Del Pezzo surfaces. Proc. London Math. Soc. (3) 57(1), 25–87 (1988)
Demazure, M.: Automorphismes et déformations des variétés de Borel. Invent. Math. 39(2), 179–186 (1977)
Eisenbud, D., Harris, J.: On varieties of minimal degree (A centennial account). In: Bloch, S.J. (ed.) Algebraic Geometry, Bowdoin, 1985. Proceedings of the Symposium Pure Mathematics, vol. 46.1, pp. 3–13. American Mathematical Society, Providence (1987)
Eisenbud, D., Van de Ven, A.: On the normal bundles of smooth rational space curves. Math. Ann. 256(4), 453–463 (1981)
Ekedahl, T., Laksov, D.: Two “generic” proofs of the spectral mapping theorem. Amer. Math. Monthly 111(7), 572–585 (2004)
Fu, B., Hwang, J.-M.: Isotrivial VMRT-structures of complete intersection type. Asian J. Math., special issue dedicated to Ngaiming Mok’s 60th birthday (2016, to appear). arXiv:1608.00846
Fujita, T.: On the structure of polarized manifolds with total deficiency one. II. J. Math. Soc. Japan 33(3), 415–434 (1981)
Furushima, M.: Complex analytic compactifications of $$\mathbf{C}^3$$ C 3 . Compositio Math. 76(1–2), 163–196 (1990)
Furushima, M.: The complete classification of compactifications of $$\mathbf{C}^3$$ C 3 which are projective manifolds with the second Betti number one. Math. Ann. 297(4), 627–662 (1993)
Griffiths, Ph., Harris, J.: Principles of Algebraic Geometry. Wiley, New York (1994) (Reprint of the 1978 original)
Hirzebruch, F.: Some problems on differentiable and complex manifolds. Ann. Math. 60, 213–236 (1954)
Hochschild, G.: Introduction to Affine Algebraic Groups. Holden-Day, San Francisco (1971)
Humphreys, J.E.: Linear Algebraic Groups. Graduate Texts in Mathematics, vol. 21. Springer, New York (1975)
Hwang, J.-M., Mok, N.: Deformation rigidity of the rational homogeneous space associated to a long simple root. Ann. Sci. Éc. Norm. Supér. (4) 35(2), 173–184 (2002)
Iskovskikh, V.A.: Fano threefolds. I. Izv. Ross. Akad. Nauk SSSR Ser. Mat. 41(3), 516–562 (1977) (in Russian)
Iskovskikh, V.A., Prokhorov, Yu.G.: Fano Varieties. In: Parshin, A.N., Shafarevich, I.R. (eds.) Algebraic Geometry V. Encyclopaedia of Mathematical Sciences, vol. 47. Springer, Berlin (1999)
Kapustka, M., Ranestad, K.: Vector bundles on Fano varieties of genus ten. Math. Ann. 356(2), 439–467 (2013)
Kishimoto, T., Prokhorov, Yu., Zaidenberg, M.: $$\mathbb{G}_{{\rm a}}$$ G a -actions on affine cones. Transform. Groups 18(4), 1137–1153 (2013)
Kodaira, K.: Holomorphic mappings of polydiscs into compact complex manifolds. J. Differential Geom. 6, 33–46 (1971/72)
Kurtzke Jr., J.F.: Centralizers of irregular elements in reductive algebraic groups. Pacific J. Math. 104(1), 133–154 (1983)
Kuznetsov, A.G., Prokhorov, YuG, Shramov, C.A.: Hilbert schemes of lines and conics and automorphism groups of Fano threefolds. Japan J. Math. 13(1), 109–185 (2018)
Landsberg, J.M., Manivel, L.: On the projective geometry of rational homogeneous varieties. Comment. Math. Helv. 78(1), 65–100 (2003)
Matsushima, Y.: Sur la structure du groupe d’homéomorphismes analytiques d’une certaine variété kählérienne. Nagoya Math. J. 11, 145–150 (1957)
Michałek, M., Perepechko, A., Süss, H.: Flexible affine cones and flexible coverings. Math. Z. (2016, to appear). arXiv:1612.01144v1
Mukai, Sh.: Curves, $$K3$$ K 3 surfaces and Fano $$3$$ 3 -folds of genus $$\leqslant 10$$ ⩽ 10 . In: Hijikata, H., et al. (eds.) Algebraic Geometry and Commutative Algebra, vol. I, pp. 357–377. Kinokuniya, Tokyo (1988)
Mukai, Sh.: Biregular classification of Fano $$3$$ 3 -folds and Fano manifolds of coindex $$3$$ 3 . Proc. Nat. Acad. Sci. USA 86(9), 3000–3002 (1989)
Peternell, T., Schneider, M.: Compactifications of $$\mathbf{C}^3$$ C 3 . I. Math. Ann. 280(1), 129–146 (1988)
Piontkowski, J., Van de Ven, A.: The automorphism group of linear sections of the Grassmannians $${\mathbb{G}} (1, N)$$ G ( 1 , N ) . Doc. Math. 4, 623–664 (1999)
Prokhorov, YuG: Fano threefolds of genus $$12$$ 12 and compactifications of $$\mathbb{C}^3$$ C 3 . St. Petersburg Math. J. 3(4), 855–864 (1992)
Prokhorov, YuG: Compactifications of $$\mathbf{C}^4$$ C 4 of index $$3$$ 3 . In: Tikhomirov, A., Tyurin, A. (eds.) Algebraic Geometry and its Applications (Yaroslavl, 1992). Aspects of Mathematics, vol. E25, pp. 159–169. Vieweg, Braunschweig (1994)
Prokhorov, Yu., Zaidenberg, M.: New examples of cylindrical Fano fourfolds. In: Masuda, K., et al. (eds.) Algebraic Varieties and Automorphism Groups. Advanced Studies in Pure Mathematics, vol. 75, pp. 443–464. Mathematical Society of Japan, Tokyo (2017)
Prokhorov, Yu., Zaidenberg, M.: Examples of cylindrical Fano fourfolds. Eur. J. Math. 2(1), 262–282 (2016)
Shokurov, V.V.: The existence of a straight line on Fano $$3$$ 3 -folds. Math. USSR-Izv. 15(1), 173–209 (1980)
Springer, T.A., Steinberg, R.: Conjugacy classes. Seminar on Algebraic Groups and Related Finite Groups. Lecture Notes in Mathematics, vol. 131, pp. 167–266. Springer, Berlin (1970)
Steinberg, R.: Regular elements of semisimple algebraic groups. Publ. Math. Inst. Hautes Études Sci. 25, 49–80 (1965)
Tevelev, E.A.: Projective Duality and Homogeneous Spaces. Encyclopaedia of Mathematical Sciences, vol. 133. Springer, Berlin (2005)
Todd, J.A.: The locus representing the lines of four-dimensional space and its application to linear complexes in four dimensions. Proc. London Math. Soc. S2–30, 513–550 (1930)
Zaidenberg, M.G.: An analytic cancellation theorem and exotic algebraic structures on $$\mathbb{C}^n$$ C n , $$n\geqslant 3$$ n ⩾ 3 . Colloque d’analyse complexe et géométrie. Astérisque 217(8), 251–282 (1993)