Family-based association study of the serotonin-2A receptor gene (5-HT2A) and bipolar disorder

NeuroMolecular Medicine - Tập 2 - Trang 251-259 - 2002
Xingqun Ni1, Joseph M. Trakalo1, Emanuela Mundo1,2, Lisa Lee1, Sagar Parikh1,2, James L. Kennedy1,2
1Neurogenetics Section, Centre for Addiction and Mental Health, Toronto, Canada
2Department of Psychiatry, University of Toronto, Toronto, Canada

Tóm tắt

Objectives: The serotonin 2A receptor gene (5-HT2A) is of great interest for research in neuropsychiatric disorders based on the observation that various neuroleptic agents and antidepressants bind with relatively high affinity at 5-HT2A receptors, and the fact that the receptor density in platelets tends to increase in depression. To test for the presence of association between 5-HT2A and bipolar disorder (BP), we studied a large number of triad families having probands affected with DSM-IV bipolar I (BPI), bipolar II (BPII) or schizoaffective disorder, bipolar type. Methods: Two polymorphisms of 5-HT2A, 102T/C, and His452Tyr were analyzed in the 274 bipolar triad families. Both the transmission disequilibrium test (TDT) and haplotype TDT were performed on the genotype data. We also calculated the maternal transmission and paternal transmission for each allele and compared the mean ages of onset across probands grouped by genotype at each of the two markers. Results: No significant transmission disequilibrium between the alleles of 5-HT2A and BP was found. Separate studies of the sub-phenotypes also failed to demonstrate significant association. However, we found a trend towards transmission disequilibrium with the haplotype 102C.His452 (p=0.0504). This trend may become more significant with a larger sample size. Significance: At present, results of this study suggest that the 5-HT2A is unlikely to play a major role in the genetic susceptibility to BP. Future studies will be directed towards increasing sample size, focusing on subtypes of BP or biochemical measures as phenotypes, and investigating other polymorphisms of 5-HT2A to provide more information at the DNA level.

Tài liệu tham khảo

Kendler K. S., Pedersen N., Johnson L., Neale M. C., and Mathe A. A. (1993) A pilot Swedish twin study of affective illness, including hospital- and population-ascertained subsamples. Arch. Gen. Psychiatry 50, 699–706. Tsuang M. T. and Faraone S. V. (1990) The genetics of mood disorders. John Hopkins University Press, Baltimore, MD. Berrettini W. (1998) Progress and pitfalls: bipolar molecular linkage studies. J. Affect. Disord. 50, 287–297. Berrettini W. H. (2000) Susceptibility loci for bipolar disorder: overlap with inherited vulnerability to schizophrenia. Biol. Psychiatry 47, 245–251. Jacobs B. L. and Fornal C. A. (1999) Activity of serotonergic neurons in behaving animals. Neuropsychopharmacology 21, 2S-15S. Meltzer H. Y. (1999) The role of serotonin in antipsychotic drug action. Neuropsycho-pharmacology 21, 106S-115S. Coccaro E. F. and Murphy D. L. (1990) Serotonin in major psychiatric disorders, American Psychiatric Press, Inc., Washington, D.C. Breier A. (1995) Serotonin, schizophrenia and anti-psychotic drugs action. Schizophr. Res. 14, 187–202. Sleight A. J., Pierce P. A., Schmidt A. W., Hekmatpanah C. R., and Peroutka S. J. (1991) The clinical utility of serotonin receptor active agents in neuropsychiatric disease. In: Peroutka S. J. (ed.) Serotonin receptor subtypes. Wiley-Liss, New York, pp. 211–227. Goyer P. F., Berridge M. S., Morris E. D., et al. (1996) PET measurement of neuroreceptor occupancy by typical and atypical neuroleptics. J. Nucl. Med. 37, 1122–1127. Mendelson S. D. (2000) The current statue of the platelet 5-HT2A receptor in depression. J. Affect. Disord. 57, 13–24. Suzuki K., Kusumi I., Sasaki Y., and Koyama T. (2001) Serotonin-induced platelet intracellular calcium mobilization in various psychiatric disorders: is it specific to bipolar disorder? J. Affect. Disord. 64, 291–296. Saltzman A. G., Morse B., Whitman M. M., Ivanshchenko Y., Jaye M., and Felder S. (1991) Cloning of the human serotonin 5-HT2 and 5-HT1C receptor subtypes. Biochem. Biophys. Res. Commun. 181, 1469–1478. Chen K., Yang W., Grimsby J., and Shih J. C. (1992) The human 5-HT2 receptor is encoded by a multiple intron-exon gene. Mol. Brain Res. 14, 20–26. Hsieh C. L., Bowcock A. M., Farrer L. A., et al. (1990) The serotonin receptor subtype 2 locus HTR2 is on human chromosome 13 near genes for esterase D and retinoblastoma and on mouse chromosome 14. Somat. Cell. Genet. 16, 567–574. Barden N. and Morissette J. (1999) Chromosome 13 workshop report. Am. J. Med. Genet. 88, 260–262. Detera-Waldeigh S. D., Badner J. A., Yoshikawa T., et al. (1999) A high density genome scan detects evidence for a bipolar-disorder susceptibility locus on 13q32 and other potential loci on 1q32 and 18p11.2. Proc. Natl. Acad. Sci. USA 96, 5604–5609. Badenhop R. F., Moses M. J., Scimone A., et al. (2001) A genome screen of a large bipolar affective disorder pedigree supports evidence for a susceptibility locus on chromosome 13q. Mol. Psychiatr 6, 396–403. Kelsoe J. R., Spence M. A., Loetscher E., et al. (2001) A genome survey indicates a possible susceptibility locus for bipolar disorder on chromosome 22. Proc. Natl. Acad. Sci. USA 98, 585–590. Liu C., Badner J. A., Christian S. L., Guroff J. J., Detera-Wadleigh S. D., and Gershon E. S. (2001) Fine mapping supports previous linkage evidence for a bipolar disorder susceptibility locus on 13q32. Am. J. Med. Genet. 105, 375–380. Zhang H. Y., Ishigaki T., Tani K., et al. (1997) Serotonin 2A receptor gene polymorphism in mood disorders. Biol. Psychiatry 41, 768–773. Gutierrez B., Arranz M., Fananas L., Valles V., Guillamat R., van Os J., and Colloer D. (1995) 5-HT2A receptor gene and bipolar affective disorder. Lancet. 346, 969. Arranz M. J., Erdmann J., Kirov G., Rietschel M., et al. (1997) 5-HT2A receptor and bipolar affective disorder: association studies in affected patients. Neurosci. Lett. 224, 95–98. Gutierrez B., Bertranpetit J., Collier D., et al. (1997) Genetic variation of the 5-HT2A receptor gene and bipolar affective disorder. Hum. Genet. 100, 582–584. Mahieu B., Souery D., Lipp O., et al. (1997) No association between bipolar affective disorder and a serotonin receptor (5-HT2A) polymorphism. Psychiatry Res. 70, 65–69. Vincent J. B., Masellis M., Lawrence J., Choi V., Guiling H. M. D., Parikh S. V., and Kennedy J. L. (1999) Genetic association analysis of serotonin system genes in bipolar affective disorder. Am. J. Psychiatry 156, 136–138. Blairy S., Massat I., Staner L., et al. (2000) 5-HT2A receptor polymorphism gene in bipolar disorder and harm avoidance personality trait. Am. J. Med. Genet. 96, 360–364. Heiden A., Schussler P., Itzlinger U., et al. (2000) Association studies of candidate genes in bipolar disorder. Neuropsychobiology 42 Suppl 1, 18–21. Massat I., Souery D., Lipp O., et al. (2000) A European multicenter association study of HTR2A receptor polymorphism in bipolar affective disorder. Am. J. Med. Genet. 96, 136–40. Tut T. G., Wang J. L., and Lim C. C. L. (2000) Negative association between T102C polymorphism at the 5-HT2A receptor gene and bipolar affective disorders in Singaporean Chinese. J. Affect. Disord. 58, 211–214. Du L., Bakish D., Lapierre Y. D., Ravindran A. V., and Hrdina P. D. (2000) Association of polymorphism of serotonin 2A receptor gene with suicidal ideation in major depressive disorder. Am. J. Med. Genet. 96, 56–60. Hamilton M. (1960) A rating scale for depression. J. Neurol. Neurosurg. Psychiatry 23, 56–62. Arias B., Gasto C., Catalan R., Gutierrez B., Pintor L., and Fananas L. (2001) The 5-HT2A receptor gene 102T/C polymorphism is associated with suicidal behavior in depressed patients. Am. J. Med. Genet. 105, 801–804. Bondy B., Kuznik J., Baghai T., et al. (2000) Lack of association of serotonin 2A receptor gene polymorphism (T102C) with suicidal ideation. Am. J. Med. Genet. 96, 831–835. Crawford J., Sutherland G. R., and Goldney R. D. (2000) No evidence for association of 5-HT2A receptor polymorphism with suicide. Am. J. Med. Genet. 96, 879–880. Preuss U. W., Koller G., Bahlmann M., Soyka M., and Bondy B. (2000) No association between suicidal behaviour and 5-HT2A-T102C polymorphism in alcohol dependents. Am. J. Med. Genet. 96, 877–878. Chee I. S., Lee S. W., Kim J. L., et al. (2001) 5-HT2A receptor gene promoter polymorphism-1438A/G and bipolar disorder. Psychiatry Genet. 11, 111–114. Enoch M. A., Goldman D., Barnett R., Sher L., Mazzanti C. M., and Rosenthal N. E. (1999) Association between seasonal affective disorder and the 5-HT2A promoter polymorphism,-1438G/A. Mol. Psychiatry 4, 89–92. Ohara K., Nagai M., Tsukamoto T., Tani, Suzuki Y., and Ohara K. (1998) 5-HT2A receptor gene promoter polymorphism -1438G/A and mood disorders. NeuroReport 9, 1139–1141. Ozaki N., Rosenthal N. E., Pesonen U., et al. (1996) Two naturally occurring amino acid substitutions of the 5-HT2A receptor: similar prevalence in patients with seasonal affective disorder and controls. Biol. Psychiatry 40, 1267–1272. Serretti A., Lorenzi C., Lilli R., and Smeraldi E. (2000) Serotonin receptor 2A, 2C, 1A genes and response to lithium prophylaxis in mood disorders. J. Psychiatr. Res. 34, 89–98. Serretti A., Lorenzi C., Lilli R., and Smeraldi E. (1999) No association between serotonin-2A receptor gene polymorphism and psychotic symptomatology of mood disorders. Psychiatry Res. 86, 203–209. Emahazion T., Feuk L., Jobs M., et al. (2001) SNP association studies in Alzheimer’s disease highlight problems for complex disease analysis. Trends Genet. 17, 407–413. Spielman R. S., McGinnis R. E., and Ewens W. J. (1993) Transmission test for linkage disequlibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM). Am. J. Hum. Genet. 52, 506–516. Stine O. C., Xu J., Koskela R., et al. (1995) Evidence for linkage of bipolar disorder to chromosome 18 with a parent-of-origin effect. Am. J. Hum. Genet. 57, 1384–1394. Kato M. V., Shimizu T., Nagayoshi M., Kaneko A., Sasaki M. S., and Ikawa Y. (1996) Genomic imprinting of the human serotonin-receptor (HTR2) gene involved in development of retinoblastoma. Am. J. Hum. Genet. 59, 1084–1090. Sham P. C. and Curtis D. (1995) An extended transmission/disequilibrium test (TDT) for multi-allele marker loci. Ann. Hum. Genet. 59, 323–336. Erdmann J., Shimron-Abarbanell D., Rietschel M., et al. (1996) Systematic screening for mutations in the human serotonin-2A (5-HT2A) receptor gene: identification of two naturally occurring receptor variants and association analysis in schizophrenia. Hum. Genet. 97, 614–619. Gothert M., Propping P., Bonisch H., Bruss M., and Nothen M. M. (1998) Genetic variation in human 5-HT receptors: potential pathogenetic and pharmacological role. Ann. NY Acad. Sci. 861, 26–30. Masellis M., Basile V., Meltzer H. Y., et al. (1998) Serotonin subtype 2 receptor genes and clinical response to clozapine in schizophrenia patients. Neuropsychopharmacology 19, 123–132. Li T., Liu X., Zhao J., et al. (2002) Allele association analysis of the dopamine D2, D3, 5-HT2A, and GABAaγ2 receptors and serotonin transporter genes with heroin abuse in Chinese subjects. Am. J. Med. Genet. 114, 329–335. America Psychiatric Association. (1994) Diagnostic and Statistical Manual of Mental Disorders, fourth edition. Washington, DC. Lahiri D. K. and Nurnberger J. I. (1991) A rapid no-enzymatic method for the preparation of HMW DNA from blood for RFLP analysis. Nucl. Acids Res. 19, 5444. Warren Jr J. T., Peacock M. L., Rodriguez L. C., and Fink J. K. (1993) An MspI polymorphism in the human serotonin receptor gene (HTR2): detection by DGGE and RFLP analysis. Hum. Mol. Genet. 2, 338. Spielman R. S. and Ewens W. J. (1998) A sibship test for linkage in the presence of association: the sib transmission/disequilibrium test. Am. J. Hum. Genet. 62, 450–458. Clayton D. and Johns H. B. (1999a) Transmision/disequilibrium test for extended marker haplotypes. Am. J. Hum. Genet. 65, 1161–1169. Clayton D. (1999b) A generalization of the transmission/disequilibrium test for uncertain-haplotype transmission. Am. J. Hum. Genet. 65, 1170–1177. Zhao J. H., Curtis D., and Sham P. C. (2000) Model free analysis and permutation tests for allelic association. Hum. Hered. 50, 133–139. Daly M. J., Rioux J. D., Schaffner S. F., Hudson T. J., and Lander E. S. (2001) High-resolution haplotype structure in the human genome. Nat. Genet. 29, 229–232. Knapp M. (1999) A note on power approximation for the transmission/disequilibrium test. Am. J. Hum. Genet. 64, 1177–1185. McGinnis R. (2000) General equations for Pt, Ps, and the power of the TDT and the affected-sib-pair-test. Am. J. Hum. Genet. 67, 1340–1347. Bunzel R., Blumcke I., Cichon S., Normann S., Schramm J., Propping P., and Nothen M. M. (1998) Polymorphic imprinting of the serotonin-2A (5-HT2A) receptor gene in human adult brain. Brain Res. Mol. Brain Res. 59, 90–92. Schurhoff F., Bellivier F., Jouvent R., Mouren-Simeoni M. C., Bouvard M., Allilaire J. F., and Leboyer M. (2000) Early and late onset-bipolar disorders: two different forms of manic-depressive illness? J. Affect. Disord. 58, 215–221. Bellivier F., Golmard J.-L., Henry C., Leboyer M., and Schurhoff F. (2001) Admixture analysis of age at onset in bipolar I affective disorder. Arch. Gen. Psychiatr 58, 510–512. Grigoroiu-Serbanescu M., Martinez M., Nothen M. M., et al. (2001) Different familial transmission patterns in bipolar I disorder with onset before and after age 25. Am. J. Med. Genet. 105, 765–773. Owen M. J., Cardno A. G., and O’Donovan M. C. (2000) Psychiatric genetics, back to the future. Mol. Psychiatry 5, 22–31. Emamghoreishi M., Schlichter L., Li P. P., Parikh S., Sen J., Kamble A., and Warsh J. J. (1997) High intracellular calcium concentrations in transformed lymphoblasts from subjects with bipolar I disorder. Am. J. Psychiatry 154, 976–982. Risch N. and Merikangas K. (1996) The future of genetic studies of complex human diseases. Science 273, 1516–1517. Pulver A. E. (2000) Search for schizophrenia susceptibility genes. Biol. Psychiatry 47, 221–230.