Family-1 UDP glycosyltransferases in pear (Pyrus bretschneideri): Molecular identification, phylogenomic characterization and expression profiling during stone cell formation
Tóm tắt
Từ khóa
Tài liệu tham khảo
Wu J, Wang Z, Shi Z et al (2013) The genome of the pear (Pyrus bretschneideri Rehd.). Genome Res 23:396–408. https://doi.org/10.1101/gr.144311.112
Zhang J, Cheng X, Jin Q et al (2017) Comparison of the transcriptomic analysis between two Chinese white pear (Pyrus bretschneideri Rehd.) genotypes of different stone cells contents. PLoS ONE 12:1–22. https://doi.org/10.1371/journal.pone.0187114
Choi J, Choi J, Hong K, Kim W (2007) Cultivar differences of stone cells in pear flesh and their effects on fruit quality. Hortic Environ Biotechnol 48:17–31
Li N, Ma Y, Song Y et al (2017) Anatomical studies of stone cells in fruits of four different pear cultivars. J Agric Biol 19(4):610–614. https://doi.org/10.17957/IJAB/15.0304
Tao S, Khanizadeh S, Zhang H, Zhang S (2009) Anatomy, ultrastructure and lignin distribution of stone cells in two Pyrus species. Plant Sci 176:413–419. https://doi.org/10.1016/j.plantsci.2008.12.011
Yan C, Yin M, Zhang N et al (2014) Stone cell distribution and lignin structure in various pear varieties. Sci Hortic (Amsterdam) 174:142–150. https://doi.org/10.1016/j.scienta.2014.05.018
Cheng X, Su X, Muhammad A et al (2018) Molecular characterization, evolution, and expression profiling of the Dirigent (DIR) family genes in Chinese white pear (Pyrus bretschneideri). Front Genet 9:1–15. https://doi.org/10.3389/fgene.2018.00136
Cai Y, Li G, Nie J et al (2010) Study of the structure and biosynthetic pathway of lignin in stone cells of pear. Sci Hortic (Amsterdam) 125:374–379. https://doi.org/10.1016/j.scienta.2010.04.029
Brahem M, Renard CMGC, Gouble B et al (2017) Characterization of tissue specific differences in cell wall polysaccharides of ripe and overripe pear fruit. Carbohydr Polym 156:152–164. https://doi.org/10.1016/j.carbpol.2016.09.019
Cheng X, Li M, Li D et al (2017) Characterization and analysis of CCR and CAD gene families at the whole-genome level for lignin synthesis of stone cells in pear (Pyrus bretschneideri) fruit. Biol Open 6:1602–1613. https://doi.org/10.1242/bio.026997
Kumar M, Campbell L, Turner S (2016) Secondary cell walls: Biosynthesis and manipulation. J Exp Bot 67:515–531. https://doi.org/10.1093/jxb/erv533
Zhong R, Ye ZH (2015) Secondary cell walls: Biosynthesis, patterned deposition and transcriptional regulation. Plant Cell Physiol 56:195–214. https://doi.org/10.1093/pcp/pcu140
Tsuyama T, Kawai R, Shitan N et al (2013) Proton-dependent coniferin transport, a common major transport event in differentiating xylem tissue of woody plants. Plant Physiol 162:918–926. https://doi.org/10.1104/pp.113.214957
Wang Y, Chantreau M, Sibout R, Hawkins S (2013) Plant cell wall lignification and monolignol metabolism. Front Plant Sci 4:1–14. https://doi.org/10.3389/fpls.2013.00220
Liu CJ (2012) Deciphering the enigma of lignification: Precursor transport, oxidation, and the topochemistry of lignin assembly. Mol Plant 5:304–317. https://doi.org/10.1093/mp/ssr121
Chapelle A, Morreel K, Vanholme R et al (2012) Impact of the absence of stem-specific glucosidases on lignin and monolignols. Plant Physiol 160:1204–1217. https://doi.org/10.1104/pp.112.203364
Tsuyama T, Takabe K (2015) Coniferin β-glucosidase is ionically bound to cell wall in differentiating xylem of poplar. J Wood Sci 61:438–444. https://doi.org/10.1007/s10086-015-1486-7
Lin JS, Huang XX, Li Q et al (2016) UDP-glycosyltransferase 72B1 catalyzes the glucose conjugation of monolignols and is essential for the normal cell wall lignification in Arabidopsis thaliana. Plant J 88:26–42. https://doi.org/10.1111/tpj.13229
Tsuji Y, Chen F, Yasuda S, Fukushima K (2005) Unexpected behavior of coniferin in lignin biosynthesis of Ginkgo biloba L. Planta 222:58–69. https://doi.org/10.1007/s00425-005-1517-5
Wang YW, Wang WC, Jin SH et al (2012) Over-expression of a putative poplar glycosyltransferase gene, PtGT1, in tobacco increases lignin content and causes early flowering. J Exp Bot 63:2799–2808. https://doi.org/10.1093/jxb/ers001
Tsuji Y, Chen F, Yasuda S, Fukushima K (2004) The behavior of deuterium-labeled monolignol and monolignol glucosides in lignin biosynthesis in angiosperms. J Agric Food Chem 52:131–134. https://doi.org/10.1021/jf034817y
Tsuyama T, Takabe K (2014) Distribution of lignin and lignin precursors in differentiating xylem of Japanese cypress and poplar. J Wood Sci 60:353–361. https://doi.org/10.1007/s10086-014-1417-z
Aoki D, Hanaya Y, Akita T et al (2016) Distribution of coniferin in freeze-fixed stem of Ginkgo biloba L. by cryo-TOF-SIMS/SEM. Sci Rep 6:1–9. https://doi.org/10.1038/srep31525
Yoshinaga A, Kamitakahara H, Takabe K (2016) Distribution of coniferin in differentiating normal and compression woods using MALDI mass spectrometric imaging coupled with osmium tetroxide vapor treatment. Tree Physiol 36:643–652. https://doi.org/10.1093/treephys/tpv116
Le Roy J, Huss B, Creach A et al (2016) Glycosylation is a major regulator of phenylpropanoid availability and biological activity in plants. Front Plant Sci 7:. https://doi.org/10.3389/fpls.2016.00735
Gachon CMM, Langlois-Meurinne M, Saindrenan P (2005) Plant secondary metabolism glycosyltransferases: The emerging functional analysis. Trends Plant Sci 10:542–549. https://doi.org/10.1016/j.tplants.2005.09.007
Caputi L, Malnoy M, Goremykin V et al (2012) A genome-wide phylogenetic reconstruction of family 1 UDP-glycosyltransferases revealed the expansion of the family during the adaptation of plants to life on land. Plant J 69:1030–1042. https://doi.org/10.1111/j.1365-313X.2011.04853.x
Huang J, Pang C, Fan S et al (2015) Genome-wide analysis of the family 1 glycosyltransferases in cotton. Mol Genet Genomics 290:1805–1818. https://doi.org/10.1007/s00438-015-1040-8
Li Y, Li P, Wang Y et al (2014) Genome-wide identification and phylogenetic analysis of Family-1 UDP glycosyltransferases in maize (Zea mays). Planta 239:1265–1279. https://doi.org/10.1007/s00425-014-2050-1
Cui L, Yao S, Dai X et al (2016) Identification of UDP-glycosyltransferases involved in the biosynthesis of astringent taste compounds in tea (Camellia sinensis). J Exp Bot 67:2285–2297. https://doi.org/10.1093/jxb/erw053
Mamoon Rehman H, Amjad Nawaz M, Bao L et al (2016) Genome-wide analysis of family-1 UDP-glycosyltransferases in soybean confirms their abundance and varied expression during seed development. J Plant Physiol 206:87–97. https://doi.org/10.1016/j.jplph.2016.08.017
Rehman HM, Nawaz MA, Shah ZH et al (2018) Comparative genomic and transcriptomic analyses of Family-1 UDP glycosyltransferase in three Brassica species and Arabidopsis indicates stress-responsive regulation. Sci Rep 8:1–18. https://doi.org/10.1038/s41598-018-19535-3
Ross J, Li Y, Lim E-K, Bowles DJ (2001) Higher plant glycosyltransferases. Genome Biol 2:REVIEWS3004. https://doi.org/10.1186/gb-2001-2-2-reviews3004
Tamura K, Peterson D, Peterson N et al (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739. https://doi.org/10.1093/molbev/msr121
Abdullah M, Cao Y, Cheng X et al (2018) Genome-wide analysis characterization and evolution of SBP genes in Fragaria vesca, Pyrus bretschneideri. Prunus persica and Prunus mume. Front Genet 9:1–12. https://doi.org/10.3389/fgene.2018.00064
Lee TH, Tang H, Wang X, Paterson AH (2013) PGDD: a database of gene and genome duplication in plants. Nucleic Acids Res 41:1152–1158. https://doi.org/10.1093/nar/gks1104
Zhang W, Yan H, Chen W et al (2014) Genome-wide identification and characterization of maize expansin genes expressed in endosperm. Mol Genet Genom 289:1061–1074. https://doi.org/10.1007/s00438-014-0867-8
Rozas J, Rozas R (1995) DnaSP, DNA sequence polymorphism: an interactive program for estimating population genetics parameters from DNA sequence data. Comput Appl Biosci 11:621–625
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2–∆∆CT method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262
Pradhan Mitra P, Loqué D (2014) Histochemical staining of Arabidopsis thaliana secondary cell wall elements. J Vis Exp 1–11. https://doi.org/10.3791/51381
Xu F, Zhong XC, Sun RC, Lu Q (2006) Anatomy, ultrastructure and lignin distribution in cell wall of Caragana Korshinskii. Ind Crops Prod 24:186–193. https://doi.org/10.1016/j.indcrop.2006.04.002
Lim EK, Bowles DJ (2004) A class of plant glycosyltransferases involved in cellular homeostatis. EMBO J 23:2915–2922. https://doi.org/10.1038/sj.emboj.7600295
Vermerris W, Abril A (2015) Enhancing cellulose utilization for fuels and chemicals by genetic modification of plant cell wall architecture. Curr Opin Biotechnol 32:104–112. https://doi.org/10.1016/j.copbio.2014.11.024
Lim EK, Jackson RG, Bowles DJ (2005) Identification and characterisation of Arabidopsis glycosyltransferases capable of glucosylating coniferyl aldehyde and sinapyl aldehyde. FEBS Lett 579:2802–2806. https://doi.org/10.1016/j.febslet.2005.04.016
Lanot A, Hodge D, Lim EK et al (2008) Redirection of flux through the phenylpropanoid pathway by increased glucosylation of soluble intermediates. Planta 228:609–616. https://doi.org/10.1007/s00425-008-0763-8
Barros J, Serk H, Granlund I, Pesquet E (2015) The cell biology of lignification in higher plants. Ann Bot 115:1053–1074. https://doi.org/10.1093/aob/mcv046
Reveal JL, Chase MW (2011) APG III: Bibliographical information and synonymy of Magnoliidae. Phytotaxa 19:71–134. https://doi.org/10.1111/j.1095-8339.2009.00996.x
Hou B, Lim EK, Higgins GS, Bowles DJ (2004) N-glucosylation of cytokinins by glycosyltransferases of Arabidopsis thaliana. J Biol Chem 279:47822–47832. https://doi.org/10.1074/jbc.M409569200
Wang J, Ma XM, Kojima M et al (2011) N-glucosyltransferase UGT76C2 is involved in cytokinin homeostasis and cytokinin response in Arabidopsis thaliana. Plant Cell Physiol 52:2200–2213. https://doi.org/10.1093/pcp/pcr152
Chen HY, Li X (2017) Identification of a residue responsible for UDP-sugar donor selectivity of a dihydroxybenzoic acid glycosyltransferase from Arabidopsis natural accessions. Plant J 89:195–203. https://doi.org/10.1111/tpj.13271
Jin SH, Ma XM, Kojima M et al (2013) Overexpression of glucosyltransferase UGT85A1 influences trans-zeatin homeostasis and trans-zeatin responses likely through O-glucosylation. Planta 237:991–999. https://doi.org/10.1007/s00425-012-1818-4
Caputi L, Lim EK, Bowles DJ (2008) Discovery of new biocatalysts for the glycosylation of terpenoid scaffolds. Chem A Eur J 14:6656–6662. https://doi.org/10.1002/chem.200800548
Mo T, Liu X, Liu Y et al (2016) Expanded investigations of the aglycon promiscuity and catalysis characteristic of flavonol 3-O-rhamnosyltransferase AtUGT78D1 from Arabidopsis thaliana. RSC Adv 6:84616–84626. https://doi.org/10.1039/C6RA16251G
Yin R, Messner B, Faus-Kessler T et al (2012) Feedback inhibition of the general phenylpropanoid and flavonol biosynthetic pathways upon a compromised flavonol-3-O-glycosylation. J Exp Bot 63:2465–2478. https://doi.org/10.1093/jxb/err416
Lim EK, Doucet CJ, Li Y et al (2002) The activity of Arabidopsis glycosyltransferases toward salicylic acid, 4-hydroxybenzoic acid, and other benzoates. J Biol Chem 277:586–592. https://doi.org/10.1074/jbc.M109287200
Lim EK, Li Y, Parr A et al (2001) Identification of glucosyltransferase genes involved in sinapate metabolism and lignin synthesis in Arabidopsis. J Biol Chem 276:4344–4349. https://doi.org/10.1074/jbc.M007263200
Zhou W, Bi H, Zhuang Y et al (2017) Production of cinnamyl alcohol glucoside from glucose in Escherichia coli. J Agric Food Chem 65:2129–2135. https://doi.org/10.1021/acs.jafc.7b00076
Lanot A, Hodge D, Jackson RG et al (2006) The glucosyltransferase UGT72E2 is responsible for monolignol 4-O-glucoside production in Arabidopsis thaliana. Plant J 48:286–295. https://doi.org/10.1111/j.1365-313X.2006.02872.x
Zhao X, Dai X, Gao L et al (2017) Functional analysis of an uridine diphosphate glycosyltransferase involved in the biosynthesis of polyphenolic glucoside in tea plants (Camellia sinensis). J Agric Food Chem 65:10993–11001. https://doi.org/10.1021/acs.jafc.7b04969
Lim E-K, Higgins GS, Li Y, Bowles DJ (2003) Regioselectivity of glucosylation of caffeic acid by a UDP-glucose:glucosyltransferase is maintained in planta. Biochem J 373:987–992. https://doi.org/10.1042/bj20021453
Tohge T, Nishiyama Y, Hirai MY et al (2005) Functional genomics by integrated analysis of metabolome and transcriptome of Arabidopsis plants over-expressing an MYB transcription factor. Plant J 42:218–235. https://doi.org/10.1111/j.1365-313X.2005.02371.x
Dai X, Zhuang J, Wu Y et al (2017) Identification of a flavonoid glucosyltransferase involved in 7-OH site glycosylation in tea plants (Camellia sinensis). Sci Rep 7:1–14. https://doi.org/10.1038/s41598-017-06453-z
Yang SL, Zhang XN, Lu GL et al (2015) Regulation of gibberellin on gene expressions related with the lignin biosynthesis in ‘Wangkumbae’ pear (Pyrus pyrifolia Nakai) fruit. Plant Growth Regul 76:127–134. https://doi.org/10.1007/s10725-014-9982-0
Pesquet E, Zhang B, Gorzsas A et al (2013) Non-cell-autonomous postmortem lignification of tracheary elements in Zinnia elegans. Plant Cell 25:1314–1328. https://doi.org/10.1105/tpc.113.110593
Smith RA, Schuetz M, Roach M, Mansfield SD, Ellis B, Samuels L (2013) Neighboring Parenchyma cells contribute to Arabidopsis xylem lignification, while lignification of interfascicular fibers is cell autonomous. Plant Cell 25:3988–3999. https://doi.org/10.1105/tpc.113.117176
Lee Y, Rubio MC, Alassimone J, Geldner N (2013) A mechanism for localized lignin deposition in the endodermis. Cell 153:402–412. https://doi.org/10.1016/j.cell.2013.02.045
Väisänen EE, Smeds AI, Fagerstedt KV et al (2015) Coniferyl alcohol hinders the growth of tobacco BY-2 cells and Nicotiana benthamiana seedlings. Planta 242:747–760. https://doi.org/10.1007/s00425-015-2348-7
Dima O, Morreel K, Vanholme B et al (2015) Small glycosylated lignin oligomers are stored in Arabidopsis leaf vacuoles. Plant Cell 27:695–710. https://doi.org/10.1105/tpc.114.134643
Wei C, Yang H, Wang S, Zhao J, Liu C, Gao L, Xia E, Lu Y, Tai Y, She G, Sun J, Cao H, Tong W, Gao Q, Li Y, Deng W, Jiang X, Wang W, Chen Q, Zhang S, Li H, Wu J, Wan X (2018) Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality. Proc Natl Acad Sci USA 115:E4151–E4158. https://doi.org/10.1073/pnas.1719622115
Velasco R, Zharkikh A, Affourtit J et al (2010) The genome of the domesticated apple (Malus × domestica Borkh.). Nat Genet 42:833–839. https://doi.org/10.1038/ng.654
Jiao Y, Wickett NJ, Ayyampalayam S et al (2011) Ancestral polyploidy in seed plants and angiosperms. Nature 473:97–100. https://doi.org/10.1038/nature09916
Li Y, Baldauf S, Lim E-K, Bowles DJ (2001) Phylogenetic analysis of the UDP-glycosyltransferase multigene family of Arabidopsis thaliana. J Biol Chem 276:4338–4343. https://doi.org/10.1074/jbc.M007447200
Li JM, Huang XS, Li LT et al (2015) Proteome analysis of pear reveals key genes associated with fruit development and quality. Planta 241:1363–1379. https://doi.org/10.1007/s00425-015-2263-y