Family-1 UDP glycosyltransferases in pear (Pyrus bretschneideri): Molecular identification, phylogenomic characterization and expression profiling during stone cell formation

Springer Science and Business Media LLC - Tập 46 Số 2 - Trang 2153-2175 - 2019
Xi Cheng1, Muhammad Abdullah1, Guohui Li1, Jingyun Zhang2,1, Jun Cheng1, Jingxiang Qiu1, Taoshan Jiang1, Qing Jin1, Yongping Cai1, Yi Lin1
1School of Life Science, Anhui Agricultural University, Hefei, China
2Horticultural Institute, Anhui Academy of Agricultural Sciences, Hefei, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Wu J, Wang Z, Shi Z et al (2013) The genome of the pear (Pyrus bretschneideri Rehd.). Genome Res 23:396–408. https://doi.org/10.1101/gr.144311.112

Zhang J, Cheng X, Jin Q et al (2017) Comparison of the transcriptomic analysis between two Chinese white pear (Pyrus bretschneideri Rehd.) genotypes of different stone cells contents. PLoS ONE 12:1–22. https://doi.org/10.1371/journal.pone.0187114

Choi J, Choi J, Hong K, Kim W (2007) Cultivar differences of stone cells in pear flesh and their effects on fruit quality. Hortic Environ Biotechnol 48:17–31

Li N, Ma Y, Song Y et al (2017) Anatomical studies of stone cells in fruits of four different pear cultivars. J Agric Biol 19(4):610–614. https://doi.org/10.17957/IJAB/15.0304

Tao S, Khanizadeh S, Zhang H, Zhang S (2009) Anatomy, ultrastructure and lignin distribution of stone cells in two Pyrus species. Plant Sci 176:413–419. https://doi.org/10.1016/j.plantsci.2008.12.011

Yan C, Yin M, Zhang N et al (2014) Stone cell distribution and lignin structure in various pear varieties. Sci Hortic (Amsterdam) 174:142–150. https://doi.org/10.1016/j.scienta.2014.05.018

Cheng X, Su X, Muhammad A et al (2018) Molecular characterization, evolution, and expression profiling of the Dirigent (DIR) family genes in Chinese white pear (Pyrus bretschneideri). Front Genet 9:1–15. https://doi.org/10.3389/fgene.2018.00136

Cai Y, Li G, Nie J et al (2010) Study of the structure and biosynthetic pathway of lignin in stone cells of pear. Sci Hortic (Amsterdam) 125:374–379. https://doi.org/10.1016/j.scienta.2010.04.029

Brahem M, Renard CMGC, Gouble B et al (2017) Characterization of tissue specific differences in cell wall polysaccharides of ripe and overripe pear fruit. Carbohydr Polym 156:152–164. https://doi.org/10.1016/j.carbpol.2016.09.019

Cheng X, Li M, Li D et al (2017) Characterization and analysis of CCR and CAD gene families at the whole-genome level for lignin synthesis of stone cells in pear (Pyrus bretschneideri) fruit. Biol Open 6:1602–1613. https://doi.org/10.1242/bio.026997

Kumar M, Campbell L, Turner S (2016) Secondary cell walls: Biosynthesis and manipulation. J Exp Bot 67:515–531. https://doi.org/10.1093/jxb/erv533

Zhong R, Ye ZH (2015) Secondary cell walls: Biosynthesis, patterned deposition and transcriptional regulation. Plant Cell Physiol 56:195–214. https://doi.org/10.1093/pcp/pcu140

Tsuyama T, Kawai R, Shitan N et al (2013) Proton-dependent coniferin transport, a common major transport event in differentiating xylem tissue of woody plants. Plant Physiol 162:918–926. https://doi.org/10.1104/pp.113.214957

Wang Y, Chantreau M, Sibout R, Hawkins S (2013) Plant cell wall lignification and monolignol metabolism. Front Plant Sci 4:1–14. https://doi.org/10.3389/fpls.2013.00220

Liu CJ (2012) Deciphering the enigma of lignification: Precursor transport, oxidation, and the topochemistry of lignin assembly. Mol Plant 5:304–317. https://doi.org/10.1093/mp/ssr121

Chapelle A, Morreel K, Vanholme R et al (2012) Impact of the absence of stem-specific glucosidases on lignin and monolignols. Plant Physiol 160:1204–1217. https://doi.org/10.1104/pp.112.203364

Tsuyama T, Takabe K (2015) Coniferin β-glucosidase is ionically bound to cell wall in differentiating xylem of poplar. J Wood Sci 61:438–444. https://doi.org/10.1007/s10086-015-1486-7

Lin JS, Huang XX, Li Q et al (2016) UDP-glycosyltransferase 72B1 catalyzes the glucose conjugation of monolignols and is essential for the normal cell wall lignification in Arabidopsis thaliana. Plant J 88:26–42. https://doi.org/10.1111/tpj.13229

Tsuji Y, Chen F, Yasuda S, Fukushima K (2005) Unexpected behavior of coniferin in lignin biosynthesis of Ginkgo biloba L. Planta 222:58–69. https://doi.org/10.1007/s00425-005-1517-5

Wang YW, Wang WC, Jin SH et al (2012) Over-expression of a putative poplar glycosyltransferase gene, PtGT1, in tobacco increases lignin content and causes early flowering. J Exp Bot 63:2799–2808. https://doi.org/10.1093/jxb/ers001

Tsuji Y, Chen F, Yasuda S, Fukushima K (2004) The behavior of deuterium-labeled monolignol and monolignol glucosides in lignin biosynthesis in angiosperms. J Agric Food Chem 52:131–134. https://doi.org/10.1021/jf034817y

Tsuyama T, Takabe K (2014) Distribution of lignin and lignin precursors in differentiating xylem of Japanese cypress and poplar. J Wood Sci 60:353–361. https://doi.org/10.1007/s10086-014-1417-z

Aoki D, Hanaya Y, Akita T et al (2016) Distribution of coniferin in freeze-fixed stem of Ginkgo biloba L. by cryo-TOF-SIMS/SEM. Sci Rep 6:1–9. https://doi.org/10.1038/srep31525

Yoshinaga A, Kamitakahara H, Takabe K (2016) Distribution of coniferin in differentiating normal and compression woods using MALDI mass spectrometric imaging coupled with osmium tetroxide vapor treatment. Tree Physiol 36:643–652. https://doi.org/10.1093/treephys/tpv116

Le Roy J, Huss B, Creach A et al (2016) Glycosylation is a major regulator of phenylpropanoid availability and biological activity in plants. Front Plant Sci 7:. https://doi.org/10.3389/fpls.2016.00735

Gachon CMM, Langlois-Meurinne M, Saindrenan P (2005) Plant secondary metabolism glycosyltransferases: The emerging functional analysis. Trends Plant Sci 10:542–549. https://doi.org/10.1016/j.tplants.2005.09.007

Caputi L, Malnoy M, Goremykin V et al (2012) A genome-wide phylogenetic reconstruction of family 1 UDP-glycosyltransferases revealed the expansion of the family during the adaptation of plants to life on land. Plant J 69:1030–1042. https://doi.org/10.1111/j.1365-313X.2011.04853.x

Huang J, Pang C, Fan S et al (2015) Genome-wide analysis of the family 1 glycosyltransferases in cotton. Mol Genet Genomics 290:1805–1818. https://doi.org/10.1007/s00438-015-1040-8

Li Y, Li P, Wang Y et al (2014) Genome-wide identification and phylogenetic analysis of Family-1 UDP glycosyltransferases in maize (Zea mays). Planta 239:1265–1279. https://doi.org/10.1007/s00425-014-2050-1

Cui L, Yao S, Dai X et al (2016) Identification of UDP-glycosyltransferases involved in the biosynthesis of astringent taste compounds in tea (Camellia sinensis). J Exp Bot 67:2285–2297. https://doi.org/10.1093/jxb/erw053

Mamoon Rehman H, Amjad Nawaz M, Bao L et al (2016) Genome-wide analysis of family-1 UDP-glycosyltransferases in soybean confirms their abundance and varied expression during seed development. J Plant Physiol 206:87–97. https://doi.org/10.1016/j.jplph.2016.08.017

Rehman HM, Nawaz MA, Shah ZH et al (2018) Comparative genomic and transcriptomic analyses of Family-1 UDP glycosyltransferase in three Brassica species and Arabidopsis indicates stress-responsive regulation. Sci Rep 8:1–18. https://doi.org/10.1038/s41598-018-19535-3

Ross J, Li Y, Lim E-K, Bowles DJ (2001) Higher plant glycosyltransferases. Genome Biol 2:REVIEWS3004. https://doi.org/10.1186/gb-2001-2-2-reviews3004

Tamura K, Peterson D, Peterson N et al (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739. https://doi.org/10.1093/molbev/msr121

Abdullah M, Cao Y, Cheng X et al (2018) Genome-wide analysis characterization and evolution of SBP genes in Fragaria vesca, Pyrus bretschneideri. Prunus persica and Prunus mume. Front Genet 9:1–12. https://doi.org/10.3389/fgene.2018.00064

Lee TH, Tang H, Wang X, Paterson AH (2013) PGDD: a database of gene and genome duplication in plants. Nucleic Acids Res 41:1152–1158. https://doi.org/10.1093/nar/gks1104

Zhang W, Yan H, Chen W et al (2014) Genome-wide identification and characterization of maize expansin genes expressed in endosperm. Mol Genet Genom 289:1061–1074. https://doi.org/10.1007/s00438-014-0867-8

Rozas J, Rozas R (1995) DnaSP, DNA sequence polymorphism: an interactive program for estimating population genetics parameters from DNA sequence data. Comput Appl Biosci 11:621–625

Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2–∆∆CT method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262

Pradhan Mitra P, Loqué D (2014) Histochemical staining of Arabidopsis thaliana secondary cell wall elements. J Vis Exp 1–11. https://doi.org/10.3791/51381

Xu F, Zhong XC, Sun RC, Lu Q (2006) Anatomy, ultrastructure and lignin distribution in cell wall of Caragana Korshinskii. Ind Crops Prod 24:186–193. https://doi.org/10.1016/j.indcrop.2006.04.002

Lim EK, Bowles DJ (2004) A class of plant glycosyltransferases involved in cellular homeostatis. EMBO J 23:2915–2922. https://doi.org/10.1038/sj.emboj.7600295

Vermerris W, Abril A (2015) Enhancing cellulose utilization for fuels and chemicals by genetic modification of plant cell wall architecture. Curr Opin Biotechnol 32:104–112. https://doi.org/10.1016/j.copbio.2014.11.024

Lim EK, Jackson RG, Bowles DJ (2005) Identification and characterisation of Arabidopsis glycosyltransferases capable of glucosylating coniferyl aldehyde and sinapyl aldehyde. FEBS Lett 579:2802–2806. https://doi.org/10.1016/j.febslet.2005.04.016

Lanot A, Hodge D, Lim EK et al (2008) Redirection of flux through the phenylpropanoid pathway by increased glucosylation of soluble intermediates. Planta 228:609–616. https://doi.org/10.1007/s00425-008-0763-8

Barros J, Serk H, Granlund I, Pesquet E (2015) The cell biology of lignification in higher plants. Ann Bot 115:1053–1074. https://doi.org/10.1093/aob/mcv046

Reveal JL, Chase MW (2011) APG III: Bibliographical information and synonymy of Magnoliidae. Phytotaxa 19:71–134. https://doi.org/10.1111/j.1095-8339.2009.00996.x

Hou B, Lim EK, Higgins GS, Bowles DJ (2004) N-glucosylation of cytokinins by glycosyltransferases of Arabidopsis thaliana. J Biol Chem 279:47822–47832. https://doi.org/10.1074/jbc.M409569200

Wang J, Ma XM, Kojima M et al (2011) N-glucosyltransferase UGT76C2 is involved in cytokinin homeostasis and cytokinin response in Arabidopsis thaliana. Plant Cell Physiol 52:2200–2213. https://doi.org/10.1093/pcp/pcr152

Chen HY, Li X (2017) Identification of a residue responsible for UDP-sugar donor selectivity of a dihydroxybenzoic acid glycosyltransferase from Arabidopsis natural accessions. Plant J 89:195–203. https://doi.org/10.1111/tpj.13271

Jin SH, Ma XM, Kojima M et al (2013) Overexpression of glucosyltransferase UGT85A1 influences trans-zeatin homeostasis and trans-zeatin responses likely through O-glucosylation. Planta 237:991–999. https://doi.org/10.1007/s00425-012-1818-4

Caputi L, Lim EK, Bowles DJ (2008) Discovery of new biocatalysts for the glycosylation of terpenoid scaffolds. Chem A Eur J 14:6656–6662. https://doi.org/10.1002/chem.200800548

Mo T, Liu X, Liu Y et al (2016) Expanded investigations of the aglycon promiscuity and catalysis characteristic of flavonol 3-O-rhamnosyltransferase AtUGT78D1 from Arabidopsis thaliana. RSC Adv 6:84616–84626. https://doi.org/10.1039/C6RA16251G

Yin R, Messner B, Faus-Kessler T et al (2012) Feedback inhibition of the general phenylpropanoid and flavonol biosynthetic pathways upon a compromised flavonol-3-O-glycosylation. J Exp Bot 63:2465–2478. https://doi.org/10.1093/jxb/err416

Lim EK, Doucet CJ, Li Y et al (2002) The activity of Arabidopsis glycosyltransferases toward salicylic acid, 4-hydroxybenzoic acid, and other benzoates. J Biol Chem 277:586–592. https://doi.org/10.1074/jbc.M109287200

Lim EK, Li Y, Parr A et al (2001) Identification of glucosyltransferase genes involved in sinapate metabolism and lignin synthesis in Arabidopsis. J Biol Chem 276:4344–4349. https://doi.org/10.1074/jbc.M007263200

Zhou W, Bi H, Zhuang Y et al (2017) Production of cinnamyl alcohol glucoside from glucose in Escherichia coli. J Agric Food Chem 65:2129–2135. https://doi.org/10.1021/acs.jafc.7b00076

Lanot A, Hodge D, Jackson RG et al (2006) The glucosyltransferase UGT72E2 is responsible for monolignol 4-O-glucoside production in Arabidopsis thaliana. Plant J 48:286–295. https://doi.org/10.1111/j.1365-313X.2006.02872.x

Zhao X, Dai X, Gao L et al (2017) Functional analysis of an uridine diphosphate glycosyltransferase involved in the biosynthesis of polyphenolic glucoside in tea plants (Camellia sinensis). J Agric Food Chem 65:10993–11001. https://doi.org/10.1021/acs.jafc.7b04969

Lim E-K, Higgins GS, Li Y, Bowles DJ (2003) Regioselectivity of glucosylation of caffeic acid by a UDP-glucose:glucosyltransferase is maintained in planta. Biochem J 373:987–992. https://doi.org/10.1042/bj20021453

Tohge T, Nishiyama Y, Hirai MY et al (2005) Functional genomics by integrated analysis of metabolome and transcriptome of Arabidopsis plants over-expressing an MYB transcription factor. Plant J 42:218–235. https://doi.org/10.1111/j.1365-313X.2005.02371.x

Dai X, Zhuang J, Wu Y et al (2017) Identification of a flavonoid glucosyltransferase involved in 7-OH site glycosylation in tea plants (Camellia sinensis). Sci Rep 7:1–14. https://doi.org/10.1038/s41598-017-06453-z

Yang SL, Zhang XN, Lu GL et al (2015) Regulation of gibberellin on gene expressions related with the lignin biosynthesis in ‘Wangkumbae’ pear (Pyrus pyrifolia Nakai) fruit. Plant Growth Regul 76:127–134. https://doi.org/10.1007/s10725-014-9982-0

Pesquet E, Zhang B, Gorzsas A et al (2013) Non-cell-autonomous postmortem lignification of tracheary elements in Zinnia elegans. Plant Cell 25:1314–1328. https://doi.org/10.1105/tpc.113.110593

Smith RA, Schuetz M, Roach M, Mansfield SD, Ellis B, Samuels L (2013) Neighboring Parenchyma cells contribute to Arabidopsis xylem lignification, while lignification of interfascicular fibers is cell autonomous. Plant Cell 25:3988–3999. https://doi.org/10.1105/tpc.113.117176

Lee Y, Rubio MC, Alassimone J, Geldner N (2013) A mechanism for localized lignin deposition in the endodermis. Cell 153:402–412. https://doi.org/10.1016/j.cell.2013.02.045

Väisänen EE, Smeds AI, Fagerstedt KV et al (2015) Coniferyl alcohol hinders the growth of tobacco BY-2 cells and Nicotiana benthamiana seedlings. Planta 242:747–760. https://doi.org/10.1007/s00425-015-2348-7

Dima O, Morreel K, Vanholme B et al (2015) Small glycosylated lignin oligomers are stored in Arabidopsis leaf vacuoles. Plant Cell 27:695–710. https://doi.org/10.1105/tpc.114.134643

Wei C, Yang H, Wang S, Zhao J, Liu C, Gao L, Xia E, Lu Y, Tai Y, She G, Sun J, Cao H, Tong W, Gao Q, Li Y, Deng W, Jiang X, Wang W, Chen Q, Zhang S, Li H, Wu J, Wan X (2018) Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality. Proc Natl Acad Sci USA 115:E4151–E4158. https://doi.org/10.1073/pnas.1719622115

Velasco R, Zharkikh A, Affourtit J et al (2010) The genome of the domesticated apple (Malus × domestica Borkh.). Nat Genet 42:833–839. https://doi.org/10.1038/ng.654

Jiao Y, Wickett NJ, Ayyampalayam S et al (2011) Ancestral polyploidy in seed plants and angiosperms. Nature 473:97–100. https://doi.org/10.1038/nature09916

Li Y, Baldauf S, Lim E-K, Bowles DJ (2001) Phylogenetic analysis of the UDP-glycosyltransferase multigene family of Arabidopsis thaliana. J Biol Chem 276:4338–4343. https://doi.org/10.1074/jbc.M007447200

Li JM, Huang XS, Li LT et al (2015) Proteome analysis of pear reveals key genes associated with fruit development and quality. Planta 241:1363–1379. https://doi.org/10.1007/s00425-015-2263-y

Singh R, Rastogi S, Dwivedi UN (2010) Phenylpropanoid metabolism in ripening fruits. Compr Rev Food Sci Food Saf 9:398–416. https://doi.org/10.1111/j.1541-4337.2010.00116.x