Families of moment matching based, structure preserving approximations for linear port Hamiltonian systems

Automatica - Tập 49 - Trang 2424-2434 - 2013
Tudor C. Ionescu1, Alessandro Astolfi1,2
1Department of Electrical and Electronic Engineering, Imperial College London, SW7 2AZ, London, UK
2Dipartimento di Ingegneria Civile e Ingegneria Informatica, Università di Roma “Tor Vergata”, Roma 00133, Italy

Tài liệu tham khảo

Anderson, 2003 Antoulas, 2005 Antoulas, 1999 Astolfi, 2010, Model reduction by moment matching for linear and nonlinear systems, IEEE Transactions on Automatic Control, 50, 2321, 10.1109/TAC.2010.2046044 Astolfi, A. (2010b). Model reduction by moment matching, steady-state response and projections. In Proc. 49th IEEE conf. on decision and control (pp. 5344–5349). Byrnes, 2008, Important moments in systems and control, SIAM Journal on Control and Optimization, 47, 2458, 10.1137/070693941 Campbell, 1980 Chu, 1987, The solution of the matrix equations AXB−CXD=E and (YA−DZ,YC−BZ)=(E,F), Linear Algebra and its Applications, 93, 93, 10.1016/S0024-3795(87)90314-4 de Souza, 1981, Controllability, observability and the solution of AX−XB=C, Linear Algebra and its Applications, 39, 167, 10.1016/0024-3795(81)90301-3 Feldman, 1995, Efficient linear circuit analysis by Padé approximation via a Lanczos method, IEEE Transactions on Computer-Aided Design, 14, 639, 10.1109/43.384428 Gallivan, 2004, Model reduction of MIMO systems via tangential interpolation, SIAM Journal on Matrix Analysis and Applications, 26, 328, 10.1137/S0895479803423925 Grimme, E.J. (1997). Krylov projection methods for model reduction. Ph.D. Thesis. ECE Dept., Univ. of Illinois, Urbana-Champaign, USA. Gugercin, 2012, Structure-preserving tangential interpolation for reduction of port-Hamiltonian systems, Automatica, 48, 1963, 10.1016/j.automatica.2012.05.052 Ionescu, T. C., & Astolfi, A. (2011). Moment matching for linear port Hamiltonian systems. In Proc. 50th IEEE conf. decision & control—European control conf. (pp. 7164–7169). Ionescu, T. C., & Scherpen, J. M. A. (2008). Passivity preserving model order reduction for the SMIB. In Proc. 47th IEEE conf. on decision and control (pp. 4879–4884). Ionescu, T. C., Scherpen, J. M. A., Iftime, O. V., & Astolfi, A. (2012). Balancing as a moment matching problem. In Proc. 20th int. symp. on mathematical theory of networks and sys. Jaimoukha, 1997, Implicitly restarted Krylov subspace methods for stable partial realizations, SIAM Journal on Matrix Analysis and Applications, 18, 633, 10.1137/S0895479895279873 Kundur, 1994 Ortega, 2002, Interconnection and damping assignment passivity based control of port-controlled Hamiltonian systems, Automatica, 38, 585, 10.1016/S0005-1098(01)00278-3 Polyuga, R. V., & van der Schaft, A. J. (2009). Moment matching for linear port Hamiltonian systems. In Proc. European control conference (pp. 4715–4720). Polyuga, 2010, Structure preserving model reduction of port-Hamiltonian systems by moment matching at infinity, Automatica, 46, 665, 10.1016/j.automatica.2010.01.018 van der Schaft, 2000 van Dooren, P. (1995). The Lanczos algorithm and Padé approximation. In Benelux meeting on systems and control. Minicourse. Wolf, 2010, Passivity and structure preserving order reduction of linear port-Hamiltonian systems using Krylov subspaces, European Journal of Control, 16, 401, 10.3166/ejc.16.401-406