Familial hypobetalipoproteinemia caused by homozygous loss-of-function mutations in PCSK9: A case report
Tài liệu tham khảo
Blanco-Vaca, 2019, Molecular analysis of APOB, SAR1B, ANGPTL3, and MTTP in patients with primary hypocholesterolemia in a clinical laboratory setting: evidence supporting polygenicity in mutation-negative patients, Atherosclerosis, 283, 52, 10.1016/j.atherosclerosis.2019.01.036
Peloso, 2019, Rare protein-truncating variants in APOB, lower low-density lipoprotein cholesterol, and protection against coronary heart disease, Circ Genom Precis Med, 12, 10.1161/CIRCGEN.118.002376
Di Filippo, 2014, Liard-Meillon ME, Lachaux A, Sassolas A. Homozygous MTTP and APOB mutations may lead to hepatic steatosis and fibrosis despite metabolic differences in congenital hypocholesterolemia, J Hepatol, 61, 891, 10.1016/j.jhep.2014.05.023
Kawashiri, 2015, Extreme contrast of postprandial remnant-like particles formed in abetalipoproteinemia and homozygous familial hypobetalipoproteinemia, JIMD Rep, 22, 85, 10.1007/8904_2015_415
Tada, 2020, A healthy family of familial hypobetalipoproteinemia caused by a protein-truncating variant in the PCSK9 gene, Intern Med, 59, 783, 10.2169/internalmedicine.3737-19
Cohen, 2006, Sequence variations in PCSK9, low LDL, and protection against coronary heart disease, N Engl J Med, 354, 1264, 10.1056/NEJMoa054013
Zhao, 2006, Molecular characterization of loss-of-function mutations in PCSK9 and identification of a compound heterozygote, Am J Hum Genet, 79, 514, 10.1086/507488
Cariou, 2009, PCSK9 dominant negative mutant results in increased LDL catabolic rate and familial hypobetalipoproteinemia, Arterioscler Thromb Vasc Biol, 29, 2191, 10.1161/ATVBAHA.109.194191
Hooper, 2007, The C679X mutation in PCSK9 is present and lowers blood cholesterol in a Southern African population, Atherosclerosis, 193, 445, 10.1016/j.atherosclerosis.2006.08.039
Sabatine, 2017, FOURIER Steering Committee and Investigators. Evolocumab and clinical outcomes in patients with cardiovascular disease, N Engl J Med, 376, 1713, 10.1056/NEJMoa1615664
Schwartz, 2018, ODYSSEY Outcomes Committees and Investigators. Alirocumab and cardiovascular outcomes after acute coronary syndrome, N Engl J Med., 379, 2097, 10.1056/NEJMoa1801174
Hori, 2015, Removal of plasma mature and furin-cleaved proprotein convertase subtilisin/kexin 9 by low-density lipoprotein-apheresis in familial hypercholesterolemia: development and application of a new assay for PCSK9, J Clin Endocrinol Metab, 100, E41, 10.1210/jc.2014-3066
Tada, 2018, Oligogenic familial hypercholesterolemia, LDL cholesterol, and coronary artery disease, J Clin Lipidol, 12, 1436, 10.1016/j.jacl.2018.08.006
Kataoka, 2017, Mature proprotein convertase subtilisin/kexin type 9, coronary atheroma burden, and vessel remodeling in heterozygous familial hypercholesterolemia, J Clin Lipidol, 11, 413, 10.1016/j.jacl.2017.01.005
Kathiresan, 2008, Myocardial Infarction Genetics Consortium. A PCSK9 missense variant associated with a reduced risk of early-onset myocardial infarction, N Engl J Med, 358, 2299, 10.1056/NEJMc0707445
Kataoka, 2017, Mature proprotein convertase subtilisin/kexin type 9, coronary atheroma burden, and vessel remodeling in heterozygous familial hypercholesterolemia, J Clin Lipidol, 11, 413, 10.1016/j.jacl.2017.01.005
Kuyama, 2021, Circulating Mature PCSK9 Level Predicts Diminished Response to Statin Therapy, J Am Heart Assoc, 10, 10.1161/JAHA.120.019525
Benjannet, 2006, The proprotein convertase (PC) PCSK9 is inactivated by furin and/or PC5/6A: functional consequences of natural mutations and post-translational modifications, J Biol Chem, 281, 30561, 10.1074/jbc.M606495200
Tarugi, 2011, Hypobetalipoproteinemia: genetics, biochemistry, and clinical spectrum, Adv Clin Chem, 54, 81, 10.1016/B978-0-12-387025-4.00004-2