Familial forms of diabetes insipidus: clinical and molecular characteristics

Nature Reviews Endocrinology - Tập 7 Số 12 - Trang 701-714 - 2011
Muriel Babey1, Peter Kopp1, Gary L. Robertson1
1Division of Endocrinology, Metabolism and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Tarry 15, 303 East Chicago Avenue, Chicago, 60611, IL, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Robertson, G. L. Antidiuretic hormone. Normal and disordered function. Endocrinol. Metab. Clin. North Am. 30, 671–694 (2001).

Gainer, H., Yamashita, M., Fields, R. L., House, S. B. & Rusnak, M. The magnocellular neuronal phenotype: cell-specific gene expression in the hypothalamo–neurohypophysial system. Prog. Brain Res. 139, 1–14 (2002).

Land, H. et al. Deduced amino acid sequence from the bovine oxytocin-neurophysin I precursor cDNA. Nature 302, 342–344 (1983).

Land, H., Schütz, G., Schmale, H. & Richter, D. Nucleotide sequence of cloned cDNA encoding bovine arginine vasopressin-neurophysinII precursor. Nature 295, 299–303 (1982).

Acher, R., Chauvet, J. & Rouille, Y. Dynamic processing of neuropeptides: sequential conformation shaping of neurohypophysial preprohormones during intraneuronal secretory transport. J. Mol. Neurosci. 18, 223–228 (2002).

de Bree, F. M. & Burbach, J. P. Structure-function relationships of the vasopressin prohormone domains. Cell. Mol. Neurobiol. 18, 173–191 (1998).

Robertson, G. L. Physiology of ADH secretion. Kidney Int. Suppl. 21, S20–S26 (1987).

Robertson, G. L., Shelton, R. L. & Athar, S. The osmoregulation of vasopressin. Kidney Int. 10, 25–37 (1976).

Zerbe, R. L. & Robertson, G. L. Osmoregulation of thirst and vasopressin secretion in human subjects: effects of various solutes. Am. J. Physiol. 244, E607–E614 (1983).

Baylis, P. H. Osmoregulation and control of vasopressin secretion in healthy humans. Am. J. Physiol. 253, R671–R678 (1987).

Koch, K. L. Nausea and vasopressin. Lancet 338, 1023 (1991).

Robertson, G. L. The use of vasopressin assays in physiology and pathophysiology. Semin. Nephrol. 14, 368–383 (1994).

Nonoguchi, H. et al. Immunohistochemical localization of V2 vasopressin receptor along the nephron and functional role of luminal V2 receptor in terminal inner medullary collecting ducts. J. Clin. Invest. 96, 1768–1778 (1995).

Birnbaumer, M. et al. Molecular cloning of the receptor for human antidiuretic hormone. Nature 357, 333–335 (1992).

Deen, P. M. et al. Requirement of human renal water channel aquaporin-2 for vasopressin-dependent concentration of urine. Science 264, 92–95 (1994).

Ward, D. T., Hammond, T. G. & Harris, H. W. Modulation of vasopressin-elicited water transport by trafficking of aquaporin2-containing vesicles. Annu. Rev. Physiol. 61, 683–697 (1999).

Fushimi, K., Sasaki, S. & Marumo, F. Phosphorylation of serine 256 is required for cAMP-dependent regulatory exocytosis of the aquaporin-2 water channel. J. Biol. Chem. 272, 14800–14804 (1997).

van Balkom, B. W. et al. The role of putative phosphorylation sites in the targeting and shuttling of the aquaporin-2 water channel. J. Biol. Chem. 277, 41473–41479 (2002).

Nielsen, S. et al. Aquaporins in the kidney: from molecules to medicine. Physiol. Rev. 82, 205–244 (2002).

Sasaki, S. et al. Cloning, characterization, and chromosomal mapping of human aquaporin of collecting duct. J. Clin. Invest. 93, 1250–1256 (1994).

Ishibashi, K. et al. Immunolocalization and effect of dehydration on AQP3, a basolateral water channel of kidney collecting ducts. Am. J. Physiol. 272, F235–F241 (1997).

Kim, S. W. et al. Decreased expression of AQP2 and AQP4 water channels and Na,K-ATPase in kidney collecting duct in AQP3 null mice. Biol. Cell 97, 765–778 (2005).

Gottschalk, C. W. & Mylle, M. Micropuncture study of the mammalian urinary concentrating mechanism: evidence for the countercurrent hypothesis. Am. J. Physiol. 196, 927–936 (1959).

Robertson, G. L. Diabetes insipidus. Endocrinol. Metab. Clin. North Am. 24, 549–572 (1995).

Robinson, A. G. DDAVP in the treatment of central diabetes insipidus. N. Engl. J. Med. 294, 507–511 (1976).

Weitzman, R. E. & Kleeman, C. R. The clinical physiology of water metabolism. Part II: Renal mechanisms for urinary concentration; diabetes insipidus. West J. Med. 131, 486–515 (1979).

Crawford, J. D. & Kennedy, G. C. Animal physiology: Chlorothiazide in diabetes insipidus. Nature 183, 891 (1959).

Brown, D., Hasler, U., Nunes, P., Bouley, R. & Lu, H. A. J. Phosphorylation events and the modulation of aquaporin 2 cell surface expression. Curr. Opin. Nephrol. Hypertens. 17, 491–498 (2008).

Aleksandrov, N. et al. Gestational diabetes insipidus: a review of an underdiagnosed condition. J. Obstet. Gynaecol. Can. 32, 225–231 (2010).

Robertson, G. L. Dipsogenic diabetes insipidus: a newly recognized syndrome caused by a selective defect in the osmoregulation of thirst. Trans. Assoc. Am. Physicians 100, 241–249 (1987).

Zerbe, R. L. & Robertson, G. L. A comparison of plasma vasopressin measurements with a standard indirect test in the differential diagnosis of polyuria. N. Engl. J. Med. 305, 1539–1546 (1981).

Kurokawa, H. et al. Posterior lobe of the pituitary gland: correlation between signal intensity on T1-weighted MR images and vasopressin concentration. Radiology 207, 79–83 (1998).

Morgenthaler, N. G., Struck, J., Alonso, C. & Bergmann, A. Assay for the measurement of copeptin, a stable peptide derived from the precursor of vasopressin. Clin. Chem. 52, 112–119 (2006).

Levinger, E. L. & Escamilla, R. F. Hereditary diabetes insipidus: report of 20 cases in seven generations. J. Clin. Endocrinol. Metab. 15, 547–552 (1955).

McIlraith, C. Notes on some cases of diabetes insipidus with marked family and hereditary tendencies. Lancet 140, 767–768 (1892).

Chase, L. A. Hereditary diabetes insipidus. Can. Med. Assoc. J. 17, 212–214 (1927).

Forssman, H. On hereditary diabetes insipidus with special regard to a sex-linked form. Acta Med. Scand. 159 (Suppl.), 1–196 (1945).

Robertson, G., Nayak, S., Kopp, P., Johansson,J. O. & Rittig, S. The cause of vasopressin responsive familial diabetes insipidus in a large Swedish kindred with X-linked recessive mode of transmission [abstract]. J. Invest. Med. 49, 58A (2001).

Bockenhauer, D. et al. Secondary nephrogenic diabetes insipidus as a complication of inherited renal diseases. Nephron Physiol. 116, 23–29 (2010).

Christensen, J. H. & Rittig, S. Familial neurohypophyseal diabetes insipidus—an update. Semin. Nephrol. 26, 209–223 (2006).

Hansen, L. K., Rittig, S. & Robertson, G. L. Genetic basis of familial neurohypophyseal diabetes insipidus. Trends Endocrinol. Metab. 8, 363–372 (1997).

McLeod, J. F. et al. Familial neurohypophyseal diabetes insipidus associated with a signal peptide mutation. J. Clin. Endocrinol. Metab. 77, 599A–599G (1993).

Elias, P. C. et al. Progressive decline of vasopressin secretion in familial autosomal dominant neurohypophyseal diabetes insipidus presenting a novel mutation in the vasopressin-neurophysin II gene. Clin. Endocrinol. (Oxf.) 59, 511–518 (2003).

Robertson, G. L. et al. in Vasopressin (eds Gross, P., Richter, D. & Robertson, G. L.) 493–503 (John Libbey Eurotext, Paris, 1993).

Stenson, P. D. et al. The Human Gene Mutation Database: 2008 update. Genome Med. 1, 13 (2009).

Rittig, S. et al. Identification of 13 new mutations in the vasopressin-neurophysin II gene in 17 kindreds with familial autosomal dominant neurohypophyseal diabetes insipidus. Am. J. Hum. Genet. 58, 107–117 (1996).

Russell, T. A. et al. A murine model of autosomal dominant neurohypophyseal diabetes insipidus reveals progressive loss of vasopressin-producing neurons. J. Clin. Invest. 112, 1697–1706 (2003).

Hayashi, M. et al. Progressive polyuria without vasopressin neuron loss in a mouse model for familial neurohypophysial diabetes insipidus. Am. J. Physiol. Regul. Integr. Comp. Physiol. 296, R1641–R1649 (2009).

Hiroi, M. et al. Activation of vasopressin neurons leads to phenotype progression in a mouse model for familial neurohypophysial diabetes insipidus. Am. J. Physiol. Regul. Integr. Comp. Physiol. 298, R486–R493 (2010).

Willcutts, M. D., Felner, E. & White, P. C. Autosomal recessive familial neurohypophyseal diabetes insipidus with continued secretion of mutant weakly active vasopressin. Hum. Mol. Genet. 8, 1303–1307 (1999).

Abu Libdeh, A. et al. Autosomal recessive familial neurohypophyseal diabetes insipidus: onset in early infancy. Eur. J. Endocrinol. 162, 221–226 (2010).

Barrett, T. G. & Bundey, S. E. Wolfram (DIDMOAD) syndrome. J. Med. Genet. 34, 838–841 (1997).

Thompson, C. J. et al. Vasopressin secretion in the DIDMOAD (Wolfram) syndrome. Q. J. Med. 71, 333–345 (1989).

Gabreëls, B. A. et al. The vasopressin precursor is not processed in the hypothalamus of Wolfram syndrome patients with diabetes insipidus: evidence for the involvement of PC2 and 7B2. J. Clin. Endocrinol. Metab. 83, 4026–4033 (1998).

Cano, A. et al. Identification of novel mutations in WFS1 and genotype-phenotype correlation in Wolfram syndrome. Am. J. Med. Genet. A 143A, 1605–1612 (2007).

Habiby, R., Robertson, G. L., Kaplowitz, P. B. & Rittig, S. A novel X-linked form of familial neurohypophyseal diabetes insipidus [abstract]. J. Invest. Med. 44, 341A (1996).

Bichet, D. G. Nephrogenic diabetes insipidus. Adv. Chronic Kidney Dis. 13, 96–104 (2006).

van Lieburg, A. F., Knoers, N. V. & Monnens, L. A. Clinical presentation and follow-up of 30 patients with congenital nephrogenic diabetes insipidus. J. Am. Soc. Nephrol. 10, 1958–1964 (1999).

Satoh, M., Ogikubo, S. & Yoshizawa-Ogasawara, A. Correlation between clinical phenotypes and X-inactivation patterns in six female carriers with heterozygote vasopressin type 2 receptor gene mutations. Endocr. J. 55, 277–284 (2008).

Lolait, S. J. et al. Cloning and characterization of a vasopressin V2 receptor and possible link to nephrogenic diabetes insipidus. Nature 357, 336–339 (1992).

Spanakis, E., Milord, E. & Gragnoli, C. AVPR2 variants and mutations in nephrogenic diabetes insipidus: review and missense mutation significance. J. Cell. Physiol. 217, 605–617 (2008).

Robben, J. H., Knoers, N. V. & Deen, P. M. Cell biological aspects of the vasopressin type-2 receptor and aquaporin 2 water channel in nephrogenic diabetes insipidus. Am. J. Physiol. Renal Physiol. 291, F257–F270 (2006).

Sadeghi, H., Robertson, G. L., Bichet, D. G., Innamorati, G. & Birnbaumer, M. Biochemical basis of partial nephrogenic diabetes insipidus phenotypes. Mol. Endocrinol. 11, 1806–1813 (1997).

Ala, Y. et al. Functional studies of twelve mutant V2 vasopressin receptors related to nephrogenic diabetes insipidus: molecular basis of a mild clinical phenotype. J. Am. Soc. Nephrol. 9, 1861–1872 (1998).

Bockenhauer, D. et al. Vasopressin type 2 receptor V88M mutation: molecular basis of partial and complete nephrogenic diabetes insipidus. Nephron Physiol. 114, 1–10 (2009).

Rochdi, M. D. et al. Functional characterization of vasopressin type 2 receptor substitutions (R137H/C/L) leading to nephrogenic diabetes insipidus and nephrogenic syndrome of inappropriate antidiuresis: implications for treatments. Mol. Pharmacol. 77, 836–845 (2010).

Feldman, B. J. et al. Nephrogenic syndrome of inappropriate antidiuresis. N. Engl. J. Med. 352, 1884–1890 (2005).

Gitelman, S. E., Feldman, B. J. & Rosenthal, S. M. Nephrogenic syndrome of inappropriate antidiuresis: a novel disorder in water balance in pediatric patients. Am. J. Med. 119 (Suppl. 1), S54–S58 (2006).

Soylu, A. et al. Efficacy of COX-2 inhibitors in a case of congenital nephrogenic diabetes insipidus. Pediatr. Nephrol. 20, 1814–1817 (2005).

Pattaragarn, A. & Alon, U. S. Treatment of congenital nephrogenic diabetes insipidus by hydrochlorothiazide and cyclooxygenase-2 inhibitor. Pediatr. Nephrol. 18, 1073–1076 (2003).

Okayasu, T. et al. A family case of nephrogenic diabetes insipidus. Tohoku J. Exp. Med. 162, 137–145 (1990).

Hochberg, Z., Even, L. & Danon, A. Amelioration of polyuria in nephrogenic diabetes insipidus due to aquaporin-2 deficiency. Clin. Endocrinol. (Oxf.) 49, 39–44 (1998).

Jakobsson, B. & Berg, U. Effect of hydrochlorothiazide and indomethacin treatment on renal function in nephrogenic diabetes insipidus. Acta Paediatr. 83, 522–525 (1994).

Morello, J. P. et al. Pharmacological chaperones rescue cell-surface expression and function of misfolded V2 vasopressin receptor mutants. J. Clin. Invest. 105, 887–895 (2000).

Jean-Alphonse, F. et al. Biased agonist pharmacochaperones of the AVP V2 receptor may treat congenital nephrogenic diabetes insipidus. J. Am. Soc. Nephrol. 20, 2190–2203 (2009).

Robben, J. H. et al. Intracellular activation of vasopressin V2 receptor mutants in nephrogenic diabetes insipidus by nonpeptide agonists. Proc. Natl Acad. Sci. USA 106, 12195–12200 (2009).

Oueslati, M. et al. Rescue of a nephrogenic diabetes insipidus-causing vasopressin V2 receptor mutant by cell-penetrating peptides. J.Biol. Chem. 282, 20676–20685 (2007).

Bouley, R., Hasler, U., Lu, H. A., Nunes, P. & Brown, D. Bypassing vasopressin receptor signaling pathways in nephrogenic diabetes insipidus. Semin. Nephrol. 28, 266–278 (2008).

Canfield, M. C., Tamarappoo, B. K., Moses, A. M., Verkman, A. S. & Holtzman, E. J. Identification and characterization of aquaporin-2 water channel mutations causing nephrogenic diabetes insipidus with partial vasopressin response. Hum. Mol. Genet. 6, 1865–1871 (1997).

Guyon, C. et al. Characterization of D150E and G196D aquaporin-2 mutations responsible for nephrogenic diabetes insipidus: importance of a mild phenotype. Am. J. Physiol. Renal Physiol. 297, F489–F498 (2009).

Mulders, S. M. et al. New mutations in the AQP2 gene in nephrogenic diabetes insipidus resulting in functional but misrouted water channels. J. Am. Soc. Nephrol. 8, 242–248 (1997).

Kamsteeg, E. J. et al. Reversed polarized delivery of an aquaporin-2 mutant causes dominant nephrogenic diabetes insipidus. J. Cell Biol. 163, 1099–1109 (2003).

de Mattia, F. et al. Lack of arginine vasopressin-induced phosphorylation of aquaporin-2 mutant AQP2–R254L explains dominant nephrogenic diabetes insipidus. J. Am. Soc. Nephrol. 16, 2872–2880 (2005).

Savelkoul, P. J. et al. p.R254Q mutation in the aquaporin-2 water channel causing dominant nephrogenic diabetes insipidus is due to a lack of arginine vasopressin-induced phosphorylation. Hum. Mutat. 30, E891–E903 (2009).

Robertson, G. L. & Scheidler, J. A. A newly recognized variant of familial nephrogenic diabetes insipidus distinguished by partial resistance to vasopressin (Type II) [abstract]. Clin. Res. 29, 555A (1981).

Robertson, G. L., Kopp, P. & Bichet, D. G. Variations in clinical phenotype associated with different mutations of the V2 receptor gene in X-linked recessive congenital nephrogenic DI (xCNDI) [abstract]. Program of NDI Foundation Global Conference Page 11 (2000).

Mizuno, H. et al. Clinical characteristics of eight patients with congenital nephrogenic diabetes insipidus. Endocrine 24, 55–59 (2004).

Faerch, M. et al. Partial nephrogenic diabetes insipidus caused by a novel mutation in the AVPR2 gene. Clin. Endocrinol. (Oxf.) 68, 395–403 (2008).

Marr, N. et al. Cell-biologic and functional analyses of five new aquaporin-2 missense mutations that cause recessive nephrogenic diabetes insipidus. J. Am. Soc. Nephrol. 13, 2267–2277 (2002).

Kuwahara, M. et al. Three families with autosomal dominant nephrogenic diabetes insipidus caused by aquaporin-2 mutations in the C-terminus. Am. J. Hum. Genet. 69, 738–748 (2001).

Mulders, S. M. et al. An aquaporin-2 water channel mutant which causes autosomal dominant nephrogenic diabetes insipidus is retained in the Golgi complex. J. Clin. Invest. 102, 57–66 (1998).