Fake or not? Automated detection of COVID-19 misinformation and disinformation in social networks and digital media

Izzat Alsmadi1, Natalie Manaeva Rice2, Michael J. O’Brien3
1Department of Computing and Cyber Security, Texas A&M University, San Antonio, San Antonio, USA
2Center for Information and Communication Studies, University of Tennessee, Knoxville, USA
3Department of Communication, History, and Philosophy, Department of Life Sciences, Texas A&M University, San Antonio, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Alenezi MN, Alqenaei ZM (2021) Machine learning in detecting COVID-19 misinformation on Twitter. Future Internet 13(10):244. https://doi.org/10.3390/fi13100244

Bright J et al (2020) Coronavirus coverage by state-backed English-language news sources. Computational Propaganda Project, Oxford, Data Memo

Brindha D, Jayaseelan R, Kadeswaran S (2020) Social media reigned by information or misinformation about COVID-19: a phenomenological study. Social Sciences & Humanities Open. https://doi.org/10.2139/ssrn.3596058

CBC News (2021) COVID-19 pandemic unleashing ‘tsunami of hate,’ says UN chief. https://www.cbc.ca/news/world/coronvirus-un-fear-xenophobia-1.5561069

COVIEWED (2020) https://www.kaggle.com/trtmio/project-coviewed-subreddit-coronavirus-news-corpus

Cui L, Lee D (2020) CoAID: COVID-19 healthcare misinformation dataset. arXiv preprint arXiv:2006.00885

Devlin J, Chang MW, Lee K, Toutanova K (2018) BERT: pre-training of deep bidirectional transformers for language understanding. arXiv:1810.04805.

Dharawat A, Lourentzou I, Morales A, Zhai C (2020) Drink bleach or do what now? COVID-HeRA: a dataset for risk-informed health decision making in the presence of COVID19 misinformation. arXiv:2010.08743v1.

Dror AA, Eisenbach N, Taiber S, Morozov NG, Mizrachi M, Zigron A, Srouji S, Sela E (2020) Vaccine hesitancy: the next challenge in the fight against COVID-19. Euro J Epidemiol 35(8):775–779. https://doi.org/10.1007/s10654-020-00671-y

Dubowitz M, Ghasseminejad S (2020) Iran’s COVID-19 disinformation campaign. Combatting Terrorism Center 13(6):40–48

Fairbanks J, Fitch N, Knauf N, Briscoe E (2018) Credibility assessment in the news: do we need to read. Proc of the MIS2 Workshop held in conjuction with 11th Intl Conf on Web Search and Data Mining February (pp. 799–800)

Glazkova A, Glazkov M, Trifonov T (2021) Exploiting CT-BERT and ensembling learning for COVID-19 fake news detection. arXiv:2012.11967

Gradoń K (2020) Crime in the time of the plague: fake news pandemic and the challenges to law-enforcement and intelligence community. Soc Register 4(2):133–148. https://doi.org/10.14746/sr.2020.4.2.10

Hamid A et al (2020) Fake news detection in social media using graph neural networks and NLP techniques: A COVID-19 use-case. arXiv preprint arXiv:2012.07517

Hao Y, Dong L, Wei F, Xu K (2019) Visualizing and understanding the effectiveness of BERT. https://doi.org/10.18653/v1/D19-142

Horawalavithana S, Silva RD, Nabeel M, Elvitigala C, Wijesekara P, Iamnitchi A (2021) Malicious and low credibility URLs on Twitter during the AstraZeneca COVID-19 vaccine development. https://doi.org/10.1007/978-3-030-80387-2_1

Hossain T, Logan IVRL, Ugarte A, Matsubara Y, Young S, Singh S (2020) COVIDLies: Detecting COVID-19 misinformation on social media. https://doi.org/10.18653/v1/2020.nlpcovid19-2.11

Hotez PJ (2021) Anti-science kills: from Soviet embrace of pseudoscience to accelerated attacks on US biomedicine. PLOS Bio 19(1). https://doi.org/10.1371/journal.pbio.3001068

Huilgol P (2020) Sentence embedding techniques one should know with Python codes. Analytics Vidhya. https://www.analyticsvidhya.com/blog/2020/08/top-4-sentence-embedding-techniques-using-python/

IDeaS, Center for Informed Democracy & Social–cybersecurity (IDeaS). Carnegie Mellon University. https://www.cmu.edu/ideas-social-cybersecurity/research/coronavirus.html

Kricorian K, Civen R, Equils O (2021) COVID-19 vaccine hesitancy: misinformation and perceptions of vaccine safety. Hum Vac & Immuno 8:1–8. https://doi.org/10.1080/21645515.2021.1950504

Ling Y et al (2017) Integrating extra knowledge into word embedding models for biomedical NLP tasks. https://doi.org/10.1109/IJCNN.2017.7965957

Liu Y et al (2019) RoBERTa: A robustly optimized BERT pretraining approach. arXiv:1907.11692

Neely SR, Eldredge C, Ersing R, Remington C (2021) Vaccine hesitancy and exposure to misinformation: a survey analysis. J Gen Intern Med 37(1):179–187

New York Times (2022) COVID Vaccination Tracker https://www.nytimes.com/interactive/2021/world/COVID-vaccinations-tracker.html

O’Brien M, Alsmadi I (2021) Misinformation, disinformation and hoaxes: what’s the difference? Conversation. https://theconversation.com/misinformation-disinformation-and-hoaxes-whats-the-difference-158491

Puri N, Coomes EA, Haghbayan H, Gunaratne K (2020) Social media and vaccine hesitancy: new updates for the era of COVID-19 and globalized infectious diseases. Hum Vacc Immunother 16(11):2586–2593. https://doi.org/10.1080/21645515.2020.1780846

Reimers N, Gurevych I (2019) Sentence-BERT: sentence embeddings using siamese BERT-networks. arXiv preprint arXiv:1908.10084. https://doi.org/10.18653/v1/D19-1410

Roozenbeek J, Schneider CR, Dryhurst S, Kerr J, Freeman AL, Recchia G, Van Der Bles AM, Van Der Linden S (2020) Susceptibility to misinformation about COVID-19 around the world. Roy Soc Open Sci 14(10):201199. https://doi.org/10.1098/rsos.201199

Ruas D et al (2020) Enhanced word embeddings using multi-semantic representation through lexical chains. Info Sci 532:16–32. https://doi.org/10.1016/j.ins.2020.04.048

Ruchansky N, Seo S, Liu Y (2017) CSI: a hybrid deep model for fake news detection. https://doi.org/10.1145/3132847.3132877

Ruck DJ, Rice NM, Borycz J, Bentley RA (2019) Internet Research Agency Twitter activity predicted 2016 US election polls. First Monday24(7)

Serrano JC, Papakyriakopoulos O, Hegelich S (2020) NLP-based feature extraction for the detection of COVID-19 misinformation videos on YouTube. https://aclanthology.org/2020.nlpcovid19-acl.17

Shahi GK, Nandini D (2020) FakeCOVID—A multilingual cross-domain fact check news dataset for COVID-19. arXiv preprint arXiv:2006.11343

Shu K, Sliva A, Wang S, Tang J, Liu H (2017) Fake news detection on social media: a data mining perspective. ACM SIGKDD Explorations Newsletter 1;19(1):22–36. https://doi.org/10.1145/3137597.3137600

Statt N (2020) Major tech platforms say they’re ‘jointly combating fraud and misinformation’about COVID-19. Verge. https://www.theverge.com/2020/3/16/21182726/coronavirus-covid-19-facebook-google-twitter-youtube-joint-effort-misinformation-fraud

Tacchini E et al (2017) Some like it hoax: automated fake news detection in social networks. arXiv:1704.07506.

Tasnim S, Hossain MM, Mazumder H (2020) Impact of rumors and misinformation on COVID-19 in social media. J Prev Med Public Health 53(3):171–174. https://doi.org/10.3961/jpmph.20.094

Thota A, Tilak P, Ahluwalia S, Lohia N (2018) Fake news detection: a deep learning approach. SMU Data Sci Rev 1(3):10

U.S. Agency for Global Media (2021) https://www.usagm.gov/2021/06/15/usagm-networks-investigate-russian-disinformation-about-western-vaccines/

Vériter SL, Bjola C, Koops JA (2020) Tackling COVID-19 disinformation: internal and external challenges for the European Union. Hague J Diplomacy 15(4):569–582

Wahle JP et al (2021) Testing the generalization of neural language models for COVID-19 misinformation detection. https://doi.org/10.1007/978-3-030-96957-8_33

Wani A, Joshi I, Khandve S, Wagh V, Joshi R (2021) Evaluating deep learning approaches for COVID19 fake news detection. https://doi.org/10.1007/978-3-030-73696-5_15

Wardle C, Singerman E (2021) Too little, too late: social media companies’ failure to tackle vaccine misinformation poses a real threat. https://doi.org/10.1136/bmj.n26

World Health Organization (2021) Cross-regional statement on “infodemic” in the context of COVID-19. https://onu.delegfrance.org/IMG/pdf/cross-regional_statement_on_infodemic_final_with_all_endorsements.pdf