Fairing of planar curves to log-aesthetic curves

Springer Science and Business Media LLC - Tập 40 - Trang 1203-1219 - 2023
Sebastián Elías Graiff Zurita1, Kenji Kajiwara1, Kenjiro T. Miura2
1Institute of Mathematics for Industry, Kyushu University, Fukuoka, Japan
2Graduate School of Science and Technology, Shizuoka University, Hamamatsu, Japan

Tóm tắt

We present an algorithm to fair a given planar curve by a log-aesthetic curve (LAC). We show how a general LAC segment can be uniquely characterized by seven parameters and present a method of parametric approximation based on this fact. This work aims to provide tools to be used in reverse engineering for computer-aided geometric design. Finally, we show an example of usage by applying this algorithm to the data points obtained from 3D scanning a model-car roof.

Tài liệu tham khảo

Brander, D., Gravesen, J., Nørjerg, T.B.: Approximation by planer elastic curves. Adv. Comput. Math. 43, 25–43 (2017) Douglas, D., Peucker, T.: Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. Can. Cartogr. 10(2), 112–122 (1973) Gobithaasan, R.U., Miura, K.T.: Aesthetic spiral for design. Sains Malaysiana 40, 1301–1305 (2011) Gobithaasan, R.U., Siew Wei, Y., Miura, K.T.: Log-aesthetic curves for shape completion problem. J. Appl. Math. 2014, 960302 (2014) Graiff Zurita, S.E., Kajiwara, K., Suzuki, T.: Fairing of discrete planar curves by integrable discrete analogue of Euler’s elasticae, preprint, arXiv:2111.00804v1 (2021) Harada, T., Mori, N., Sugiyama, K.: Study of quantitative analysis of curve’s character. Bull. JSSD 40, 9–16 (1994). (in Japanese) Hoffmann, T.: Discrete differential geometry of curves and surfaces, MI Lecture Notes 18. Kyushu University, Fukuoka (2009) Inoguchi, J., Jikumaru, Y., Kajiwara, K., Miura, K.T., Schief, W.K.: Log-aesthetic curves: similarity geometry, integrable discretization and variational principles, preprint, arXiv:1808.03104v2 (2021) Inoguchi, J., Kajiwara, K., Miura, K.T., Sato, M., Schief, W.K., Shimizu, Y.: Log-aesthetic curves as similarity geometric analogue of Euler’s elasticae. Comput. Aided Geom. Des. 61, 1–5 (2018) Levien, R., Séquin, C.H.: Interpolating splines: which is the fairest of them all? Comput. Aided Des. Appl. 6, 91–102 (2009) Miura, K.T., Agari, S., Akie, T., Yoshida, N., Saito, T.: Discrete log-aesthetic filter. Comput. Aided Des. Appl. 6, 501–512 (2009) Miura, K.T., Gobithaasan, R.U.: Aesthetic design with log-aesthetic curves and surfaces. In: Dobashi, Y., Ochiai, H. (eds.) Mathematical progress in expressive image synthesis III, Mathematics for industry, vol. 24, pp. 107–120. Springer, Singapore (2015) Miura, K.T., Sone, J., Yamashita, A., Kaneko, T.: Derivation of a general formula of aesthetic curves. In: Proceedings of the Eighth International Conference on Humans and Computers (HC2005), pp 166–171 (2005) Ramer, U.: An iterative procedure for the polygonal approximation of plane curves. Comput. Graph. Image Process. 1, 244–256 (1972) Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. Ser. A 106, 25–57 (2006) Yoshida, N., Saito, T.: Interactive aesthetic curve segments. Vis. Comput. 22, 896–905 (2006) Yoshida, N., Saito, T.: The evolutes of log-aesthetic planar curves and the drawable boundaries of the curve segments. Comput. Aided Des. Appl. 9, 721–731 (2012) Ziatdinov, R., Yoshida, N., Kim, T.: Analytic parametric equations of log-aesthetic curves in terms of incomplete gamma functions. Comput. Aided Geom. Des. 29(2), 129–140 (2012)