Fairing of planar curves to log-aesthetic curves
Tóm tắt
We present an algorithm to fair a given planar curve by a log-aesthetic curve (LAC). We show how a general LAC segment can be uniquely characterized by seven parameters and present a method of parametric approximation based on this fact. This work aims to provide tools to be used in reverse engineering for computer-aided geometric design. Finally, we show an example of usage by applying this algorithm to the data points obtained from 3D scanning a model-car roof.
Tài liệu tham khảo
Brander, D., Gravesen, J., Nørjerg, T.B.: Approximation by planer elastic curves. Adv. Comput. Math. 43, 25–43 (2017)
Douglas, D., Peucker, T.: Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. Can. Cartogr. 10(2), 112–122 (1973)
Gobithaasan, R.U., Miura, K.T.: Aesthetic spiral for design. Sains Malaysiana 40, 1301–1305 (2011)
Gobithaasan, R.U., Siew Wei, Y., Miura, K.T.: Log-aesthetic curves for shape completion problem. J. Appl. Math. 2014, 960302 (2014)
Graiff Zurita, S.E., Kajiwara, K., Suzuki, T.: Fairing of discrete planar curves by integrable discrete analogue of Euler’s elasticae, preprint, arXiv:2111.00804v1 (2021)
Harada, T., Mori, N., Sugiyama, K.: Study of quantitative analysis of curve’s character. Bull. JSSD 40, 9–16 (1994). (in Japanese)
Hoffmann, T.: Discrete differential geometry of curves and surfaces, MI Lecture Notes 18. Kyushu University, Fukuoka (2009)
Inoguchi, J., Jikumaru, Y., Kajiwara, K., Miura, K.T., Schief, W.K.: Log-aesthetic curves: similarity geometry, integrable discretization and variational principles, preprint, arXiv:1808.03104v2 (2021)
Inoguchi, J., Kajiwara, K., Miura, K.T., Sato, M., Schief, W.K., Shimizu, Y.: Log-aesthetic curves as similarity geometric analogue of Euler’s elasticae. Comput. Aided Geom. Des. 61, 1–5 (2018)
Levien, R., Séquin, C.H.: Interpolating splines: which is the fairest of them all? Comput. Aided Des. Appl. 6, 91–102 (2009)
Miura, K.T., Agari, S., Akie, T., Yoshida, N., Saito, T.: Discrete log-aesthetic filter. Comput. Aided Des. Appl. 6, 501–512 (2009)
Miura, K.T., Gobithaasan, R.U.: Aesthetic design with log-aesthetic curves and surfaces. In: Dobashi, Y., Ochiai, H. (eds.) Mathematical progress in expressive image synthesis III, Mathematics for industry, vol. 24, pp. 107–120. Springer, Singapore (2015)
Miura, K.T., Sone, J., Yamashita, A., Kaneko, T.: Derivation of a general formula of aesthetic curves. In: Proceedings of the Eighth International Conference on Humans and Computers (HC2005), pp 166–171 (2005)
Ramer, U.: An iterative procedure for the polygonal approximation of plane curves. Comput. Graph. Image Process. 1, 244–256 (1972)
Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. Ser. A 106, 25–57 (2006)
Yoshida, N., Saito, T.: Interactive aesthetic curve segments. Vis. Comput. 22, 896–905 (2006)
Yoshida, N., Saito, T.: The evolutes of log-aesthetic planar curves and the drawable boundaries of the curve segments. Comput. Aided Des. Appl. 9, 721–731 (2012)
Ziatdinov, R., Yoshida, N., Kim, T.: Analytic parametric equations of log-aesthetic curves in terms of incomplete gamma functions. Comput. Aided Geom. Des. 29(2), 129–140 (2012)