Failure probability analysis by employing fuzzy fault tree analysis
Tóm tắt
Từ khóa
Tài liệu tham khảo
Aqlan F, Mustafa Ali E (2014) Integrating lean principles and fuzzy bow-tie analysis for risk assessment in chemical industry. J Loss Prev Process Ind 29:39–48. doi: 10.1016/j.jlp.2014.01.006
Ford DN, Sterman JD (1998) Expert knowledge elicitation to improve formal and mental models. Syst Dyn Rev 14:309–340. doi: 10.1002/(SICI)1099-1727(199824)14:4<309:AID-SDR154>3.0.CO;2-5
Gupta S, Bhattacharya J (2007) Reliability Analysis of a conveyor system using hybrid data. Qual Reliab Eng Int 23:867–882. doi: 10.1002/qre.843
Gupta S, Bhattacharya J, Barabady J, Kumar U (2013) Cost-effective importance measure. Int J Qual Reliab Manag 30:379–386. doi: 10.1108/02656711311308376
HSE Department (2016) Accident report. Tehran
Hsu H-M, Chen C-T (1996) Aggregation of fuzzy opinions under group decision making. Fuzzy Sets Syst 79:279–285. doi: 10.1016/0165-0114(95)00185-9
Jensen FV, Nielsen TD (2007) Bayesian networks and decision graphs. J Phys A Math Theor. doi: 10.1007/978-0-387-68282-2
Kumar Tyagi S, Pandey D, Tyagi R (2010) Fuzzy set theoretic approach to fault tree analysis. Multicr Int J Eng Sci Technol 2:276–283. doi: 10.4314/ijest.v2i5.60165
Lavasani SM, Zendegani A, Celik M (2015) An extension to fuzzy fault tree analysis (FFTA) application in petrochemical process industry. Process Saf Environ Prot 93:75–88. doi: 10.1016/j.psep.2014.05.001
Lee H-S (2001) Aggregation of fuzzy opinions under group decision making\nenvironment. In: 10th IEEE Interenational conference on fuzzy systems (Cat. No.01CH37297) 1, pp. 279–285. doi: 10.1109/FUZZ.2001.1007275
Liang G-S, Wang M-JJ (1993) Fuzzy fault-tree analysis using failure possibility. Microelectron Reliab 33:583–597. doi: 10.1016/0026-2714(93)90326-T
Lin C-T, Wang M-JJ (1997) Hybrid fault tree analysis using fuzzy sets fFL (X). Reliab Eng Syst Saf 58:205–213. doi: 10.1016/S0951-8320(97)00072-0
Liu Y, Fan ZP, Yuan Y, Li H (2014) A FTA-based method for risk decision-making in emergency response. Comput Oper Res 42:49–57. doi: 10.1016/j.cor.2012.08.015
Mahapatra GS (2010) Intuitionistic fuzzy fault tree analysis using intuitionistic fuzzy numbers. Int Math Forum 5:1015–1024
Mentes A, Helvacioglu IH (2011) An application of fuzzy fault tree analysis for spread mooring systems. Ocean Eng 38:285–294. doi: 10.1016/j.oceaneng.2010.11.003
Miller G (1956) The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychol Rev 101:343–352. doi: 10.1037/h0043158
Miri Lavasani MR, Wang J, Yang Z, Finlay J (2011) Application of fuzzy fault tree analysis on oil and gas offshore pipelines. Int J Mar Sci Eng 1:29–42
Misra KB, Weber GG (1990) Use of fuzzy set theory for level-I studies in probabilistic risk assessment. Fuzzy Sets Syst 37:139–160. doi: 10.1016/0165-0114(90)90038-8
Modarres M (2006) Risk analysis in engineering: techniques, tools, and trends. Taylor & Francis, Routledge
Nedjati A, Vizvari B, Izbirak G (2016) Post-earthquake response by small UAV helicopters. Nat Hazards 80:1669–1688. doi: 10.1007/s11069-015-2046-6
Nicolis JS, Tsuda I (1985) Chaotic dynamics of information processing: the “magic number seven plus-minus two” revisited. Bull Math Biol 47:343–365. doi: 10.1007/BF02459921
Omidvari M, Lavasani SMR, Mirza S (2014) Presenting of failure probability assessment pattern by FTA in Fuzzy logic (case study: distillation tower unit of oil refinery process). J Chem Health Saf 21:14–22. doi: 10.1016/j.jchas.2014.06.003
Onisawa T (1988a) A representation of human reliability using fuzzy concepts. Inf Sci (Ny) 45:153–173. doi: 10.1016/0020-0255(88)90038-2
Onisawa T (1988b) An approach to human reliability in man-machine systems using error possibility. Fuzzy Sets Syst 27:87–103. doi: 10.1016/0165-0114(88)90140-6
Onisawa T (1990) An application of fuzzy concepts to modelling of reliability analysis. Fuzzy Sets Syst 37:267–286. doi: 10.1016/0165-0114(90)90026-3
Onisawa T (1996) Subjective analysis of system reliability and its analyzer. Fuzzy Sets Syst 83:249–269. doi: 10.1016/0165-0114(95)00381-9
Onisawa T, Misra KB (1993) CHAPTER 14—use of fuzzy sets theory: (part-II: applications). In: Fundamental studies in engineering. pp. 551–586. doi: 10.1016/B978-0-444-81660-3.50024-1
PDS Data Handbook [WWW Document], n.d. https://www.sintef.no/projectweb/pds-main-page/pds-handbooks/pds-data-handbook/
Pillay A, Wang J (2003) Modified failure mode and effects analysis using approximate reasoning. Reliab Eng Syst Saf 79:69–85. doi: 10.1016/S0951-8320(02)00179-5
Preyssl C (1995) Safety risk assessment and management—the ESA approach. Reliab Eng Syst Saf 49:303–309. doi: 10.1016/0951-8320(95)00047-6
Rajakarunakaran S, Maniram Kumar A, Arumuga Prabhu V (2015) Applications of fuzzy faulty tree analysis and expert elicitation for evaluation of risks in LPG refuelling station. J Loss Prev Process Ind 33:109–123. doi: 10.1016/j.jlp.2014.11.016
Ramzali N, Lavasani MRM, Ghodousi J (2015) Safety barriers analysis of offshore drilling system by employing fuzzy event tree analysis. Saf Sci 78:49–59. doi: 10.1016/j.ssci.2015.04.004
Rausand M, Høyland A (2004) System reliability theory: models, statistical methods, and applications. doi: 10.1109/WESCON.1996.554026
Shi L, Shuai J, Xu K (2014) Fuzzy fault tree assessment based on improved AHP for fire and explosion accidents for steel oil storage tanks. J Hazard Mater 278:529–538. doi: 10.1016/j.jhazmat.2014.06.034
Spouge J (1999) A guide to quantitative risk assessment for offshore installations. DNV Tech. doi: ISBN I 870553 365
STPC MSDS Profile (2002) STPC MSDS Profile, 1st edn. Shahid Tondgouyan Petrochemical Company, Mahshahr
Sugeno M, Nguyen HT, Prasad NR (1999) Fuzzy modeling and control: selected works of M Sugeno. CRC Press, Boca Raton
Wang D, Zhang P, Chen L (2013) Fuzzy fault tree analysis for fire and explosion of crude oil tanks. J Loss Prev Process Ind 26:1390–1398. doi: 10.1016/j.jlp.2013.08.022
Yuhua D, Datao Y (2005) Estimation of failure probability of oil and gas transmission pipelines by fuzzy fault tree analysis 18:83–88. doi: 10.1016/j.jlp.2004.12.003