Faedo–Galerkin method for impulsive second-order stochastic integro-differential systems

Chaos, Solitons & Fractals - Tập 158 - Trang 111946 - 2022
Surendra Kumar1, Paras Sharma1
1Faculty of Mathematical Sciences, Department of Mathematics, University of Delhi, Delhi 110007, India

Tài liệu tham khảo

Prato, 1992 Govindan, 2016 Øksendal, 1998 Benchohra, 2006 Lakshmikantham, 1989 Heinz, 1975, Zu einem Satz von F.W. Browder über nichtlineare Wellengleichungen, Math Z, 141, 33, 10.1007/BF01236982 Bazley, 1979, Approximation of wave equations with reproducing nonlinearities, Nonlinear Anal TMA, 3, 539, 10.1016/0362-546X(79)90071-3 Bazley, 1980, Global convergence of Faedo–Galerkin approximations to nonlinear wave equations, Nonlinear Anal TMA, 4, 503, 10.1016/0362-546X(80)90088-7 Goethel, 1984, Faedo–Galerkin approximations in equations of evolution, Math Methods Appl Sci, 6, 41, 10.1002/mma.1670060104 Miletta, 1994, Approximation of solutions to evolution equations, Math Methods Appl Sci, 17, 753, 10.1002/mma.1670171002 Bahuguna, 1996, Approximation of solutions to evolution integrodifferential equations, J Appl Math Stoch Anal, 9, 315, 10.1155/S1048953396000299 Bahuguna, 2001, Approximations of solutions to semilinear integrodifferential equations, Numer Funct Anal Optim, 22, 487, 10.1081/NFA-100105304 Bahuguna, 2003, Approximations of solutions to second order semilinear integrodifferential equations, Numer Funct Anal Optim, 24, 365, 10.1081/NFA-120022929 Muslim, 2010, Approximation of solutions to impulsive functional differential equations, J Appl Math Comput, 34, 101, 10.1007/s12190-009-0310-1 Raheem, 2019, An approximate solution to a class of impulsive fractional differential equations in a reflexive Banach space, Int J Appl Comput Math, 5, 1 Sousa, 2021, Faedo–Galerkin approximation of mild solutions of fractional functional differential equations, Nonauton Dyn Syst, 8, 1, 10.1515/msds-2020-0122 Fattorini, 1985 Travis, 1978, Cosine families and abstract nonlinear second order differential equations, Acta Math Acad Sci Hung, 32, 75, 10.1007/BF01902205 Ichikawa, 1982, Stability of semilinear stochastic evolution equations, J Math Anal Appl, 90, 12, 10.1016/0022-247X(82)90041-5 Zadoyanchuk, 2007, Faedo–Galerkin method for nonlinear second-order evolution equations with volterra operators, Nonlinear Oscil, 10, 203, 10.1007/s11072-007-0016-y Zadoyanchuk, 2009, Faedo–Galerkin method for second-order evolution inclusions with wλ-pseudomonotone mappings, Ukr Math J, 61, 236, 10.1007/s11253-009-0207-z Muslim, 2018, Faedo–Galerkin approximation of second order nonlinear differential equation with deviated argument, Appl Math Comput, 329, 315 Luo, 2014, Existence of solutions of a second-order impulsive differential equation, Adv Differ Equ, 2014, 1 Balasubramaniam, 2009, Faedo–Galerkin approximate solutions for stochastic semilinear integrodifferential equations, Comput Math Appl, 58, 48, 10.1016/j.camwa.2009.03.084 Chaudhary, 2016, Approximation of solutions to a delay equation with a random forcing term and non local conditions, J Integral Equ Appl, 28, 481 Chaudhary, 2018, Existence and approximation of solution to stochastic fractional integro-differential equation with impulsive effects, Collect Math, 69, 181, 10.1007/s13348-017-0199-1 Pazy, 1983 Whitham, 1974 Horsthemke, 1984