Factors influencing Al-Cu weld properties by intermetallic compound formation

Paul Kah1, Cyril Vimalraj1, Jukka Martikainen1, Raimo Suoranta1
1Laboratory of Welding Technology, Lappeenranta University of Technology, Lappeenranta, Finland

Tóm tắt

Dissimilar welding of aluminium (Al) and copper (Cu) has many applications in the electric power, electronic and piping industries. The weldments in these applications are highly valued for their corrosion resistance, heat and electricity conducting properties. The Al-Cu joints are lighter, cheaper and have conductivity equal to that of copper alloys. Much research has investigated dissimilar welding of Al-Cu by solid-state welding and fusion welding processes with the aim of optimising the properties and strength of such dissimilar joints. The main aim of the study is to critically review the factors influencing the properties of the Al-Cu joint. The study mainly discusses about the effects of intermetallic compounds (IMC) on the properties of Al-Cu joint and their effect while in service. The effects of joining aluminium alloy 1060 with pure copper by laser welding, friction stir welding and brazing have been reviewed and compared. The review shows that the various intermetallic compound formations in the joint have both beneficial and detrimental effects. The characteristics of these intermetallic compounds vary according to the location of the phase formed. Comparison of processes and parameters for welding of Al 1060 with pure Cu shows that the formation of the intermetallic compounds and their effects on the weld properties are mainly influenced by the welding speed, heat input, the thermal properties of the base metals and the filler metal as well as the dilution between the base metal and filler metal.

Tài liệu tham khảo

Abdollah-zadeh, A, Saeid, T, & Sazgari, B. (2008). Microstructural and mechanical properties of friction stir welded aluminum/copper lap joints. Journal of Alloys and Compounds, 460(1-2), 535–538. Acarer, M. (2012). Electrical, corrosion, and mechanical properties of aluminum-copper joints produced by explosive welding. Journal of Materials Engineering and Performance, 21(11), 2375–2379. Akinlabi, ET, Andrews, A, & Akinlabi, SA. (2014). Effects of processing parameters on corrosion properties of dissimilar friction stir welds of aluminium and copper. Transactions of Nonferrous Metals Society of China, 14(5), 1323–1330. Balasundaram, R, Vikas, KP, Bhole, SD, & Chen, D. (2014). Effect of zinc interlayer on ultrasonic spot welded aluminum-to-copper joints. Materials Science & Engineering A, 607, 277–286. Berlanga-Labari, C, Albístur-Goñi, A, Balerdi-Azpilicueta, P, Gutiérrez-Peinado, M, & Ferńandez Carrasquilla, J. (2011). Study and selection of the most appropriate filler materials for an Al/Cu brazing joint in cooling circuits. Materials and Manufacturing Processes, 26(2), 236–241. Bisadi, H, Tavakoli, A, Sangsaraki, MT, & Sangsaraki, KT. (2013). The influences of rotational and welding speeds on microstructures and mechanical properties of friction stir welded Al5083 and commercially pure copper sheets lap joints. Materials & Design, 43, 80–88. Braunović, M, & Alexandrov, NG. (1994). Intermetallic compounds at aluminum-to-copper electrical interfaces: effect of temperature and electric current. IEEE Transactions on Components, Packaging, and Manufacturing Technology, 17(1), 78–85. Feng, J, Songbai, X, & Wei, D. (2012a). Reliability studies of Cu/Al joints brazed with Zn–Al–Ce filler metals. Materials & Design, 42, 156–163. Feng, J, Song-bai, X, Ji-yuan, L, Yin-bin, L, & Shui-qing, W. (2012b). Microstructure and properties of Cu/Al joints brazed with Zn-Al filler metals. Transactions of Nonferrous Metals Society of China, 22(2), 281–287. Feng, J, Songbai, X, & Wei, D. (2013). Effects of Ti on the brazability of Zn-22Al-xTi filler metals as well as properties of Cu/Al brazing joints. Rare Metal Materials and Engineering, 42(12), 2453–2457. Feng, J, & Xue, S. (2013). Growth behaviors of intermetallic compound layers in Cu/Al joints brazed with Zn–22Al and Zn–22Al–0.05Ce filler metals. Materials and Design, Volume, 51, 907–915. Francis R., 2000. Bimetallic corrosion. [Online] Available at: http://www.npl.co.uk/upload/pdf/bimetallic_20071105114556.pdf. [Accessed 14 June 2014]. Galvão, I, João Carlos, O, Loureiro, A, & Rodrigues, DM. (2012). Formation and distribution of brittle structures in friction stir welding of aluminium and copper: Influence of shoulder geometry. Intermetallics, 22, 122–128. Galvão, I, Leal, R, Loureiro, A J R & Rodrigues, D M, (2010). Material flow in heterogeneous friction stir welding of aluminium and copper thin sheets. Science and Technology of Welding and Joining, 15(8), pp. 654–660. Hailat, MM, Mian, A, Chaudhury, Z A, Newaz, G M, Patwa, R & Herfurth, H J. (2012). Laser micro-welding of aluminum and copper with and without tin foil alloy. Microsystem Technologies, 18(1), 103–112. Hayes, M, Thornton, C E, Ibarra, S J., McMaster, J A, & Walter, C E. (2001). Clad and Dissimilar metal. In: Welding handbook Volume 4: Materials and Applications. s.l.:American Welding Society, pp. 394–450. Huseyin, U, Claudio Dalle, D, Argagnotto, A, Ghidini, T, & Gambaro, C. (2005). Friction stir welding of dissimilar Al 6013-T4 to X5CrNi18-10 stainless steel [J]. Materials and Design, 26(1), 41–46. Ihor, M, & Schmidt, M. (2006). Laser micro welding of copper and aluminum. Proceedings of the SPIE, 6107, 28–33. Jariyaboon, M, Davenport, A J, Ambat, R, Connolly, B J, Williams, S W, & Price, D A. (2007). The effect of welding parameters on the corrosion behaviour of friction stir welded AA2024–T351. Corrosion Science, 49(2), 877–909. Joseph, RD. (2006). Corrosion of weldments. In RD Joseph (Ed.), Corrosion of dissimilar metal weldments. s.l. (pp. 169–175). USA: ASM International. Klauke, 2012. Klauke A Textron Comapany. [Online] Available at: http://www.klauke.com/en/electrical/technical-reports/accurately-connecting-copper-and-aluminium/. [Accessed 21 10 2014]. Krishnan, S, Murty, BS, & Kalvala, PR. (2009). Effect of processing parameters on the corrosion behaviour of friction stir processed AA 2219 aluminum alloy. Solid State Sciences, 11(4), 907–917. Lawrence, M, Ying, L, Flores, R D, Elizabeth, A T, & McClure, J C. (1998). Intercalation vortices and related microstructural features in the friction-stir welding of dissimilar metals. Materials Research Innovations, 2(3), 150–163. Lee, T, Choi, W, Tu, K, Jang, J, Kuo, S M, Lin, J, Frear, D R, Zeng, K, & Kivilahti, J K. (2002). Morphology, kinetics, and thermodynamics of solid-state aging of eutectic SnPb and Pb-free solders (Sn–3.5Ag, Sn–3.8Ag–0.7Cu and Sn–0.7Cu) on Cu. Journal of Materials Research, 17(2), 291–301. Leonardo, RG, Wislei, RO, & Amauri, G. (2011). The effect of cooling rate on the dendritic spacing and morphology of Ag3Sn intermetallic particles of a SnAg solder alloy. Materials & Design, 32(5), 3008–3012. Lin, S, Song, J, Yang, C, & Ma, G. (2009). Microstructure analysis of interfacial layer with tungsten inert gas welding-brazing joint of aluminum alloy/stainless steel [J]. Acta Metallurgica Sinica, 45(10), 1211–1216. Liu, P, Shi, Q, Wang, W, Wang, X, & Zhang, Z. (2008). Microstructure and XRD analysis of FSW joints for copper T2/aluminium 5A06 dissimilar materials. Materials Letters, 62(25), 4106–4108. Li, X-W, Zhang, D-T, Qiu, C, & Zhang, W. (2012). Microstructure and mechanical properties of dissimilar pure copper/1350 aluminum alloy butt joints by friction stir welding. Transactions of Nonferrous Metals Society of China, 22(6), 1298–1306. Lloyd AC, 1957. Aluminum dissimilar metal joint and method of making same. Unites state, Patent No. 2790656 Mai, TA, & Spowage, AC. (2004). Characterisation of dissimilar joints in laser welding of steel–kovar, copper–steel and copper–aluminium. Materials Science and Engineering A, 374(1-2), 224–233. Mubiayi, M. P. & Akinlabi, E. T., 2013. Friction stir welding of dissimilar materials between aluminium alloys and copper - An overview. Lecture Notes in Engineering and Computer Science, Volume 3, pp. 1990-1996. Nicholas, MG, & Old, C. (1979). Liquid metal embrittlement. Journal of Materials Science, 14(1), 1–18. Ochi, H, Ogawa, K, Yamamoto, Y, Kawai, G, & Sawai, T. (2004). The formation of intermetallic compounds in aluminium alloy to copper friction-welded joints and their effect on joint efficiency. Welding International, 18(7), 516–523. Ouyang, J, Yarrapareddy, E, & Kovačević, R. (2006). Microstructural evolution in the friction stir welded 6061 aluminum alloy (T6-temper condition) to copper. Journal of Materials Processing Technology, 172(1), 110–122. Pang, J, Tan, K, Shi, X, & Wang, Z. (2001). Microstructure and intermetallic growth effects on shear and fatigue strength of solder joints subjected to thermal cycling aging. Materials Science and Engineering A, 307(1-2), 42–50. Posinasetti, P, & Prasad, KY. (2005). Meeting challenges in welding of aluminium alloys through pulse gas metal arc welding. Journal of Materials Processing Technology, 164–165, 1106–1112. Sahin, M. (2009). Joining of aluminium and copper materials with friction welding. The International Journal of Advanced Manufacturing Technology, 49(5-8), 527–534. Sarvghad-Moghaddam, M, Parvizi, R., Davoodi, A., Haddad-Sabzevar, M. & Imani, A. (2014). Establishing a correlation between interfacial microstructures and corrosion initiation sites in Al/Cu joints by SEM–EDS and AFM–SKPFM. Corrosion Science, Volume, 79, 148–158. Solacity, 2011. Solacity Inc. Reliable Green power. [Online] Available at: http://www.solacity.com/docs/polyphaser/dissimilar%20metals%20may%20take%20away%20your%20protection.pdf. [Accessed 29 5 2014]. Solchenbach, T, Plapper, P, & Cai, W. (2014). Electrical performance of laser braze-welded aluminum–copper interconnects. Journal of Manufacturing Processes, 16(2), 183–189. Song-bai, X, Jian, D, Xiao-chun, L, & Yi-yu, Q. (2003). Brazing technology of LY12 Al-alloy at middle temperature [J]. Transactions of the China Welding Institution, 24(3), 21–23. Song, J, Lan, GF, Lui, T, & Chen, L. (2003). Microstructure and tensile properties of Sn–9Zn–xAg lead-free solder alloys [J]. Scripta Materialia, 48(8), 1047–1051. Sujin, L, Tatsuo, N, Yousuke, K, & Seiji, K. (2014). Effect of welding speed on microstructural and mechanical properties of laser lap weld joints in dissimilar Al and Cu sheets. Science and Technology of Welding and Joining, 19(2), 111–118. Sun, Z, & Karppi, R. (1996). The application of electron beam welding for the joining of dissimilar metals: an overview. Journal of Materials Processing Technology, 59(3), 257–267. Sun, Z, & Moisio, T. (1994). Melting ratio in laser welding of dissimilar metals. Journal of Materials Science Letters, 13(13), 980–982. Takehiko, W. Yanagisawa, A., Konuma, S., Yoneda, A. & Ohashi, O., 1999 (Online—2010). Ultrasonic welding of Al-Cu and AI-SUS304. Study of ultrasonic welding of dissimilar metals (1st Report). Welding International, 13(11), pp. 875-886 Tan, C-W, Jiang, Z., Li, L., Chen, Y. & Chen, X. (2013). Microstructural evolution and mechanical properties of dissimilar Al–Cu joint produced by friction stir welding. Materials and Design, 51, 466–473. Tohid, S, Abdollah-zadeh, A, & Sazgari, B. (2010). Weldability and mechanical properties of dissimilar aluminum–copper lap joints made by friction stir welding. Journal of Alloys and Compounds, 490(1-2), 652–655. Weigl, M, Albert, F, & Schmidt, M. (2011). Enhancing the ductility of laser-welded copper-aluminum connections by using adapted filler materials. Physics Procedia, 12(Part B), 332–338. Weigl, M, & Schmidt, M. (2009). Modulated laser spot welding of dissimilar copper–aluminum connections. Germany: Karlsruhe, s.n. Wonbae, L, Kuek-Saeng, B, & Seung-Boo, J. (2005). Effects of intermetallic compound on the electrical and mechanical properties of friction welded Cu/Al bimetallic joints during annealing. Journal of Alloys and Compounds, 390(1-2), 212–219. Xia, C, Li, Y, Puchkov, U A, Gerasimov, S A, & Wang, J. (2008). Microstructure and phase constitution near the interface of Cu/Al vacuum brazing using Al–Si filler metal. Vacuum, 82(8), 799–804. Xiao, Y, Hongjun, J, Li, M, & Jongmyung, K. (2013). Ultrasound-assisted brazing of Cu/Al dissimilar metals using a Zn–3Al filler metal. Materials & Design, 52, 740–747. Xue, P, Xiao, B, Ni, D, & Ma, Z. (2010). Enhanced mechanical properties of friction stir welded dissimilar Al–Cu joint by intermetallic compounds. Materials Science and Engineering: A, 527(21-22), 5723–5727. Yan, X, Liu, S, Long, W, Huang, J, Zhang, L, & Chen, Y. (2013). The effect of homogenization treatment on microstructure and properties of ZnAl15 solder. Materials & Design, 45, 440–445. Yong, GK, Hidetoshi, F, Tsumura, T, Toru, K, & Kazuhiro, N. (2006). Three defect types in friction stir welding of aluminum die casting alloy. Materials Science and Engineering: A, 415(1-2), 250–254. Zhao, Y, Li, D, & Zhang, Y. (2013). Effect of welding energy on interface zone of Al–Cu ultrasonic welded joint. Science and Technology of Welding and Joining, 18(4), 354–360. Zuo, D, Hu, S, Shen, J, & Xue, Z. (2014). Intermediate layer characterization and fracture behavior of laser-welded copper/aluminum metal joints. Materials and Design, 58, 357–362.