Factors influencing Al-Cu weld properties by intermetallic compound formation

Paul Kah1, Cyril Vimalraj1, Jukka Martikainen1, Raimo Suoranta1
1Laboratory of Welding Technology, Lappeenranta University of Technology, Lappeenranta, Finland

Tóm tắt

Dissimilar welding of aluminium (Al) and copper (Cu) has many applications in the electric power, electronic and piping industries. The weldments in these applications are highly valued for their corrosion resistance, heat and electricity conducting properties. The Al-Cu joints are lighter, cheaper and have conductivity equal to that of copper alloys. Much research has investigated dissimilar welding of Al-Cu by solid-state welding and fusion welding processes with the aim of optimising the properties and strength of such dissimilar joints. The main aim of the study is to critically review the factors influencing the properties of the Al-Cu joint. The study mainly discusses about the effects of intermetallic compounds (IMC) on the properties of Al-Cu joint and their effect while in service. The effects of joining aluminium alloy 1060 with pure copper by laser welding, friction stir welding and brazing have been reviewed and compared. The review shows that the various intermetallic compound formations in the joint have both beneficial and detrimental effects. The characteristics of these intermetallic compounds vary according to the location of the phase formed. Comparison of processes and parameters for welding of Al 1060 with pure Cu shows that the formation of the intermetallic compounds and their effects on the weld properties are mainly influenced by the welding speed, heat input, the thermal properties of the base metals and the filler metal as well as the dilution between the base metal and filler metal.

Tài liệu tham khảo