Factors Affecting Inducible Expression of Outer Membrane Protein A (OmpA) of Shigella dysenteriae Type-1 in Lactococcus lactis Using Nisin Inducible Controlled Expression (NICE)

Springer Science and Business Media LLC - Tập 56 - Trang 80-87 - 2015
Bhrugu Yagnik1, Shivangi Patel1, Maitree Dave1, Drashya Sharma1, Harish Padh1, Priti Desai1
1Department of Cell and Molecular Biology, B. V. Patel PERD Centre, Ahmedabad, India

Tóm tắt

Potential use of Lactococcus lactis (L. lactis) as a heterologous protein expression host as well as for delivery of multiple therapeutic proteins has been investigated extensively using Nisin Inducible Controlled Expression (NICE) system. Optimum inducible expression of heterologous protein by NICE system in L. lactis depends on multiple factors. To study the unexplored role of factors affecting heterologous protein expression in L. lactis using NICE, the present study outlines the optimization of various key parameters such as inducer concentration, host’s proteases and precipitating agent using Outer membrane protein A (OmpA). For efficient expression and secretion of OmpA, pSEC:OmpA vector was successfully constructed. To circumvent the troubles encountered during detection of expressed OmpA, the precipitating agent was switched from TCA to methanol. Nevertheless, detection was achieved accompanied by degraded protein products. Speculating the accountability of observed degradation at higher inducer concentration, different nisin concentrations were evaluated. Lower nisin concentrations were found desirable for optimum expression of OmpA. Consistently observed degradation was eliminated by incorporation of protease inhibitor cocktail which inhibits intracellular proteases and expression in VEL1153 (NZ9000 ΔhtrA) strain which inhibits extracellular protease leading to optimum expression of OmpA. Versatility and complexity of NICE system in L. lactis requires fine-tuning of target protein specific parameters for optimum expression.

Tài liệu tham khảo

Cortes-Perez NG, Poquet I, Oliveira M, Gratadoux JJ, Madsen SM, Miyoshi A, Corthier G, Azevedo V, Langella P, Bermúdez-Humarán LG (2006) Construction and characterization of a Lactococcus lactis strain deficient in intracellular ClpP and extracellular HtrA proteases. Microbiology 152:2611–2618. doi:10.1099/mic.0.28698-0 Kuipers OP, De Ruyter PGGA, Kleerebezem M, De Vos WM (1998) Quorum sensing-controlled gene expression in lactic acid bacteria. J Biotechnol 64:15–21. doi:10.1016/S0168-1656(98)00100-X Villatoro-Hernandez J, Loera-Arias MJ, Gamez-Escobedo A, Franco-Molina M, Gomez-Gutierrez J, Rodriguez-Rocha H, Gutierrez-Puente Y, Saucedo-Cardenas O, Valdes-Flores J, Montes-de-Oca-Luna R (2008) Secretion of biologically active interferon-gamma inducible protein-10 (IP-10) by Lactococcus lactis. Microb Cell Fact 7:22. doi:10.1186/1475-2859-7-22 Le Loir Y, Azevedo V, Oliveira SC, Freitas DA, Miyoshi A, Bermúdez-humarán LG, Nouaille S, Ribeiro LA, Leclercq S, Gabriel JE, Guimaraes VD, Oliveira MN, Charlier C, Gautier M, Langella P (2005) Protein secretion in Lactococcus lactis: an efficient way to increase the overall heterologous protein production. Microb Cell Fact 13:1–13. doi:10.1186/1475-2859-4-2 Frelet-barrand A, Boutigny S, Kunji ERS, Rolland N (2010) Heterologous expression of membrane proteins. Methods Mol Biol 601:67–85. doi:10.1007/978-1-60761-344-2 Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor Ribeiro LA, Azevedo V, Le LY, Oliveira SC, Dieye Y, Piard JC, Gruss A, Langella P (2002) Production and Targeting of the Brucella abortus Antigen L7/L12 in Lactococcus lactis: a first step towards food-grade live vaccines against brucellosis. Appl Environ Microbiol 68:910–916. doi:10.1128/AEM.68.2.910 Zellner M, Winkler W, Hayden H, Diestinger M, Eliasen M, Gesslbauer B, Miller I, Chang M, Kungl A, Roth E, Oehler R (2005) Quantitative validation of different protein precipitation methods in proteome analysis of blood platelets. Electrophoresis 26:2481–2489. doi:10.1002/elps.200410262 Oddone GM, Mills DA, Block DE (2009) Incorporation of nisI-mediated nisin immunity improves vector-based nisin-controlled gene expression in lactic acid bacteria. Plasmid 61:151–158. doi:10.1016/j.plasmid.2008.12.001 Rigoulay C, Poquet I, Madsen SM, Gruss A (2004) Expression of the Staphylococcus aureus surface proteins HtrA1 and HtrA2 in Lactococcus lactis. FEMS Microbiol Lett 237:279–288. doi:10.1016/j.femsle.2004.06.046 Oddone GM, Mills DA, Block DE (2009) Dual inducible expression of recombinant GFP and targeted antisense RNA in Lactococcus lactis. Plasmid 62:108–118. doi:10.1016/j.plasmid.2009.06.002 Desai PN, Shrivastava N, Padh H (2010) Production of heterologous proteins in plants: strategies for optimal expression. Biotechnol Adv 28:427–435. doi:10.1016/j.biotechadv.2010.01.005 Jiang L, He L, Fountoulakis M (2004) Comparison of protein precipitation methods for sample preparation prior to proteomic analysis. J Chromatogr A 1023:317–320. doi:10.1016/j.chroma.2003.10.029 Fic E, Kedracka-Krok S, Jankowska U, Pirog A, Dziedzicka-Wasylewska M (2010) Comparison of protein precipitation methods for various rat brain structures prior to proteomic analysis. Electrophoresis 31:3573–3579. doi:10.1002/elps.201000197 Bowie JU (2005) Solving the membrane protein folding problem. Nature 438:581–589. doi:10.1038/nature04395 Gentile F, Amodeo P, Febbraio F et al (2002) SDS-resistant active and thermostable dimers are obtained from the dissociation of homotetrameric β-glycosidase from hyperthermophilic Sulfolobus solfataricus in SDS: stabilizing role of the A–C intermonomeric interface. J Biol Chem 277:44050–44060. doi:10.1074/jbc.M206761200 Zhou XX, Li WF, Ma GX, Pan YJ (2006) The nisin-controlled gene expression system: construction, application and improvements. Biotechnol Adv 24:285–295. doi:10.1016/j.biotechadv.2005.11.001 Drouault S, Corthier G, Ehrlich SD (2000) Expression of the Staphylococcus hyicus Lipase in Lactococcus lactis. Appl Environ Microbiol 66:588–598. doi:10.1128/AEM.66.2.588-598.2000 Marreddy RKR, Pinto JPC, Wolters JC, Geertsma ER, Fusetti F, Permentier HP, Kuipers OP, Kok J, Poolman B (2011) The response of Lactococcus lactis to membrane protein production. PLoS ONE 6:1–15. doi:10.1371/journal.pone.0024060 Enouf V, Langella P, Commissaire J, Cohen J (2001) Bovine rotavirus nonstructural protein 4 produced by Lactococcus lactis is antigenic and immunogenic. Appl Environ Microbiol 67:1423–1428. doi:10.1128/AEM.67.4.1423 Bodzon-Kulakowska A, Bierczynska-Krzysik A, Dylag T, Drabik A, Suder P, Noga M, Jarzebinska J, Silberring J (2007) Methods for samples preparation in proteomic research. J Chromatogr, B: Anal Technol Biomed Life Sci 849:1–31. doi:10.1016/j.jchromb.2006.10.040 Langella P, Miyoshi A, Gruss A, Guerra RT, Oca-luna RMDe, Le LY (2002) Production of human papillomavirus type 16 E7 protein in Lactococcus lactis. Appl Environ Microbiol 68–2:917–922. doi:10.1128/AEM.68.2.917 Frees D, Ingmer H (1999) ClpP participates in the degradation of misfolded protein in Lactococcus lactis. Mol Microbiol 31:79–87 Gasson MJ (1983) Genetic transfer systems in lactic acid bacteria. Antonie Van Leeuwenhoek 49:275–282. doi:10.1007/BF00399500 Foucaud-Scheunemann C, Poquet I (2003) HtrA is a key factor in the response to specific stress conditions in Lactococcus lactis. FEMS Microbiol Lett 224:53–59. doi:10.1016/S0378-1097(03)00419-1 Bermdez-Humarán LG, Langella P, Commissaire J, Gilbert S, Loir Y, L’Haridon R, Corthier G (2003) Controlled intra- or extracellular production of staphylococcal nuclease and ovine omega interferon in Lactococcus lactis. FEMS Microbiol Lett 224:307–313. doi:10.1016/S0378-1097(03)00475-0