Factorization through inclusion mappings betweenl p-spaces

Mathematische Annalen - Tập 220 - Trang 123-135 - 1976
Hans Jarchow1
1Mathematisches Institut, Universität Zürich, Zürich, Switzerland

Tài liệu tham khảo

Bennet, G.: Inclusion mappings betweenl p-spaces. J. of Funct. Anal.13, 20–27 (1973) Carl, B.: Absolut-(p, 1)-summierende identische Operatoren vonl u inl t. Math. Nachr.63, 353–360 (1974) Dazord, J.: Applications semi-faibles. C.R. Acad. Sci. Paris, Sér. A,278, 261–263 (1974) Gordon, Y., Lewis, D.R., Retherford, J.R.: Banach ideals of operators with applications. J. of Funct. Anal.14, 85–129 (1973) Hogbé-Nlend, H.: Techniques de bornologie en théorie des espaces vectoriels topologiques. Lecture Notes in Math.331, 84–162 (1973) Jarchow, H.: Die Universalität des Raumesc 0 für die Klasse der Schwartz-Räume. Math. Ann.203, 211–214 (1973) Jarchow, H., Swart, J.: On Mackey convergence in locally convex spaces. Israel J. Math.16, 150–158 (1973) Köthe, G.: Topologische lineare Räume, 2nd ed. Berlin, Heidelberg, New York: Springer 1966 Kwapień, S.: Some remarks on (p,q)-absolutely summing operators inl p-spaces. Studia Math.29, 328–337 (1968) Kwapieén, S.: On operators factorizable throughL p-space. Bull. Soc. Math. France, Mém.31–32, 215–225 (1972) Lindenstrauss, J., Pełczyński, A.: Absolutely summing operators inL p-spaces and their applications. Studia Math.29, 275–326 (1968) Persson, A., Pietsch, A.:p-nukleare undp-integrale Abbildungen in Banach-Räumen. Studia Math.33, 19–62 (1969) Pietsch, A.: Ideale vonS p-Operatoren in Banachräumen. Studia Math.38, 59–69 (1970) Pietsch, A.:l p-faktorisierbare Operatoren in Banach-Räumen. Acta Sci. Math. (Szeged)31, 117–123 (1970) Pietsch, A.: Ideals of operators on Banach spaces and nuclear locally convex spaces. Proc. III. Symp. General Topology, Prag 1971 Pietsch, A.: Nuclear locally convex spaces. Berlin, Heidelberg, New York: Springer 1972 Pietsch, A.: Theorie der Operatorenideale (Zusammenfassung), Jena 1972 Rosenthal, H.P.: On quasi-complemented subspaces of Banach spaces, with an appendix on compactness of operators fromL p(μ) toL q(v). J. of Funct. Anal.4, 176–214 (1969) Randtke, D.: A simple example of a universal Schwartz space. Proc. Amer. Math. Soc.37, 185–188 (1973) Saxon, S.: Embedding nuclear spaces in products of an arbitrary Banach space. Proc. Amer. Math. Soc.34, 138–140 (1972) Schaefer, H.H.: Topological vector spaces. Berlin, Heidelberg, New York: Springer 1971 Stiles, W.J.: Some properties ofl p, 0<p<1. Studia Math.42, 109–119 (1972) Terzioglu, T.: Remarks on (p,q)-factorable operators. Bull. Acad. Polon. Sci., Sér. Sci. Math. Astron. Phys.23, 165–168 (1975) Valdivia, M.: A class of precompact sets in Banach spaces. Journ. Reine Angew. Math.276, 130–136 (1975)