Factorization patterns on nonlinear families of univariate polynomials over a finite field

Springer Science and Business Media LLC - Tập 51 - Trang 103-153 - 2019
Guillermo Matera1,2, Mariana Pérez1,3, Melina Privitelli2,4
1Instituto del Desarrollo Humano, Universidad Nacional de General Sarmiento, Los Polvorines, Argentina
2National Council of Science and Technology (CONICET), Buenos Aires, Argentina
3Universidad Nacional de Hurlingham, Hurlingham, Argentina
4Instituto de Ciencias, Universidad Nacional de General Sarmiento, Los Polvorines, Argentina

Tóm tắt

We estimate the number $$|\mathcal {A}_{{\varvec{\lambda }}}|$$ of elements on a nonlinear family $$\mathcal {A}$$ of monic polynomials of $$\mathbb {F}_{q}[T]$$ of degree r having factorization pattern $${\varvec{\lambda }}:=1^{\lambda _1}2^{\lambda _2}\ldots r^{\lambda _r}$$. We show that $$|\mathcal {A}_{{\varvec{\lambda }}}|= \mathcal {T}({\varvec{\lambda }})\,q^{r-m}+\mathcal {O}(q^{r-m-{1}/{2}})$$, where $$\mathcal {T}({\varvec{\lambda }})$$ is the proportion of elements of the symmetric group of r elements with cycle pattern $${\varvec{\lambda }}$$ and m is the codimension of $$\mathcal {A}$$. We provide explicit upper bounds for the constants underlying the $$\mathcal {O}$$-notation in terms of $${\varvec{\lambda }}$$ and $$\mathcal {A}$$ with “good” behavior. We also apply these results to analyze the average-case complexity of the classical factorization algorithm restricted to $$\mathcal {A}$$, showing that it behaves as good as in the general case.

Tài liệu tham khảo

Bank, E., Bary-Soroker, L., Rosenzweig, L.: Prime polynomials in short intervals and in arithmetic progressions. Duke Math. J. 164(2), 277–295 (2015) Benoist, O.: Degrés d’homogénéité de l’ensemble des intersections complètes singulières. Ann. Inst. Fourier (Grenoble) 62(3), 1189–1214 (2012) Cafure, A., Matera, G.: Improved explicit estimates on the number of solutions of equations over a finite field. Finite Fields Appl. 12(2), 155–185 (2006) Cafure, A., Matera, G.: An effective Bertini theorem and the number of rational points of a normal complete intersection over a finite field. Acta Arith. 130(1), 19–35 (2007) Cafure, A., Matera, G., Privitelli, M.: Singularities of symmetric hypersurfaces and Reed–Solomon codes. Adv. Math. Commun. 6(1), 69–94 (2012) Cafure, A., Matera, G., Privitelli, M.: Polar varieties, Bertini’s theorems and number of points of singular complete intersections over a finite field. Finite Fields Appl. 31, 42–83 (2015) Caniglia, L., Galligo, A., Heintz, J.: Equations for the projective closure and effective Nullstellensatz. Discrete Appl. Math. 33, 11–23 (1991) Cesaratto, E., Matera, G., Pérez, M.: The distribution of factorization patterns on linear families of polynomials over a finite field. Combinatorica 37(5), 805–836 (2017) Chatzidakis, Z., van den Dries, L., Macintyre, A.: Definable sets over finite fields. J. Reine Angew. Math. 427, 107–135 (1992) Cohen, S.: The distribution of polynomials over finite fields. Acta Arith. 17, 255–271 (1970) Cohen, S.: Uniform distribution of polynomials over finite fields. J. Lond. Math. Soc. (2) 6(1), 93–102 (1972) Cox, D., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra. Undergraduate Texts in Mathematics. Springer, New York (1992) D’Andrea, C., Krick, T., Szanto, A.: Subresultants in multiple roots. Linear Algebra Appl. 438(5), 1969–1989 (2013) Danilov, V.: Algebraic varieties and schemes. In: Shafarevich, I.R. (ed.) Algebraic Geometry I. Encyclopaedia of Mathematical Sciences, vol. 23, pp. 167–307. Springer, Berlin (1994) Eisenbud, D.: Commutative Algebra with a View Toward Algebraic Geometry. Graduate Texts in Mathematics, vol. 150. Springer, New York (1995) Ernst, T.: Generalized Vandermonde Determinants, Report 2000:6 Matematiska Institutionen, Uppsala Universitet. http://www.math.uu.se/research/pub/. Accessed 31 Aug 2010 (2000) Flajolet, P., Fusy, E., Gourdon, X., Panario, D., Pouyanne, N.: A hybrid of Darboux’s method and singularity analysis in combinatorial asymptotics. Electron. J. Combin. 13(1) (2006) research paper r103 Flajolet, P., Gourdon, X., Panario, D.: The complete analysis of a polynomial factorization algorithm over finite fields. J. Algorithms 40(1), 37–81 (2001) Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge University Press, Cambridge (2009) Fried, M., Haran, D., Jarden, M.: Effective counting of the points of definable sets over finite fields. Israel J. Math. 85(1–3), 103–133 (1994) Fried, M., Smith, J.: Irreducible discriminant components of coefficient spaces. Acta Arith. 44(1), 59–72 (1984) Fulton, W.: Intersection Theory. Springer, Berlin (1984) Gao, S., Howell, J., Panario, D.: Irreducible polynomials of given forms. In: Finite Fields: Theory, Applications, and Algorithms. Fourth International Conference, Waterloo, Ontario, Canada, 12–15 Aug 1997. American Mathematical Society, Providence, pp. 43–54 (1999) Geddes, K., Czapor, S., Labahn, G.: Algorithms for Computer Algebra. Kluwer Academic Publishers, Dordrecht (1992) Ghorpade, S., Lachaud, G.: Étale cohomology, Lefschetz theorems and number of points of singular varieties over finite fields. Mosc. Math. J. 2(3), 589–631 (2002) Ghorpade, S., Lachaud, G.: Number of solutions of equations over finite fields and a conjecture of Lang and Weil. In: Agarwal, A.K., et al. (eds.) Number Theory and Discrete Mathematics (Chandigarh, 2000), pp. 269–291. Hindustan Book Agency, New Delhi (2002) Gibson, C.: Elementary Geometry of Algebraic Curves: An Undergraduate Introduction. Cambridge University Press, Cambridge (1998) Golomb, S., Gaal, P.: On the number of permutations of \(n\) objects with greatest cycle length \(k\). Adv. Appl. Math. 20(1), 98–107 (1998) Graham, R., Knuth, D., Patashnik, O.: Concrete Mathematics: A Foundation for Computer Science, 2nd edn. Addison-Wesley, Reading (1994) Greene, D., Knuth, D.: Mathematics for the Analysis of Algorithms, 3rd edn. Birkhäuser, Basel (1990) Ha, J.: Irreducible polynomials with several prescribed coefficients. Finite Fields Appl. 40, 10–25 (2016) Harris, J.: Algebraic Geometry: A First Course. Graduate Texts in Mathematics, vol. 133. Springer, New York (1992) Heintz, J.: Definability and fast quantifier elimination in algebraically closed fields. Theoret. Comput. Sci. 24(3), 239–277 (1983) Knopfmacher, A., Knopfmacher, J.: The distribution of values of polynomials over a finite field. Linear Algebra Appl. 134, 145–151 (1990) Knuth, D.E.: The Art of Computer Programming II: Semi-numerical Algorithms, vol. 2, 3rd edn. Addison-Wesley, Reading (1998) Kunz, E.: Introduction to Commutative Algebra and Algebraic Geometry. Birkhäuser, Boston (1985) Lascoux, A., Pragacz, P.: Jacobians of symmetric polynomials. Ann. Comb. 6(2), 169–172 (2002) Lachaud, G., Rolland, R.: On the number of points of algebraic sets over finite fields. J. Pure Appl. Algebra 219(11), 5117–5136 (2015) Lidl, R., Niederreiter, H.: Finite Fields. Addison-Wesley, Reading (1983) Matera, G., Pérez, M., Privitelli, M.: On the value set of small families of polynomials over a finite field, II. Acta Arith. 165(2), 141–179 (2014) Matera, G., Pérez, M., Privitelli, M.: Explicit estimates for the number of rational points of singular complete intersections over a finite field. J. Number Theory 158(2), 54–72 (2016) Merca, M.: A note on the determinant of a Toeplitz–Hessenberg matrix. Spec. Matrices 1, 10–16 (2013) Muir, T.: The Theory of Determinants in the Historical Order of Development. Dover Publications Inc., New York (1960) Pardo, L.M., San Martín, J.: Deformation techniques to solve generalized Pham systems. Theoret. Comput. Sci. 315(2–3), 593–625 (2004) Pérez, M.: Análisis probabilístico de algoritmos y problemas combinatorios sobre cuerpos finitos. Ph.D. thesis, Univ. Buenos Aires, Argentina (2016) Pollack, P.: Irreducible polynomials with several prescribed coefficients. Finite Fields Appl. 22, 70–78 (2013) Shafarevich, I.R.: Basic Algebraic Geometry: Varieties in Projective Space. Springer, New York (1994) Shepp, L., Lloyd, S.: Ordered cycle lengths in a random permutation. Trans. Amer. Math. Soc. 121, 340–357 (1996) Shoup, V.: A Computational Introduction to Number Theory and Algebra. Cambridge University Press, Cambridge (2005) von zur Gathen, J., Gerhard, J.: Modern Computer Algebra. Cambridge University Press, Cambridge (1999) von zur Gathen, J., Matera, G.: Explicit estimates for polynomial systems defining irreducible smooth complete intersections. Preprint arXiv:1512.05598 [math.NT] (2018), to appear in Acta Arith Vogel, W.: Results on Bézout’s Theorem. Tata Institute of Fundamental Research Lectures on Mathematics and Physics, vol. 74. Tata Institute of Fundamental Research, Bombay (1984) Zassenhaus, H.: On Hensel factorization I. J. Number Theory 1, 291–311 (1969)