Factorization by elementary matrices, null-homotopy and products of exponentials for invertible matrices over rings

Analysis and Mathematical Physics - Tập 9 Số 3 - Trang 1005-1018 - 2019
Evgueni Doubtsov1, Frank Kutzschebauch2
1St. Petersburg Department of V.A. Steklov Institute of Mathematics, St. Petersburg, Russia
2Institute of Mathematics, University of Bern, Bern, Switzerland

Tóm tắt

Từ khóa


Tài liệu tham khảo

Bass, H.: $$K$$ K -theory and stable algebra. Inst. Hautes Études Sci. Publ. Math. 22, 5–60 (1964)

Brudnyi, A.: On the factorization of matrices over commutative Banach algebras. Integral Equ. Oper. Theory 90(1), Art. 6, 8 (2018)

Brudnyi, A.: On the Bass stable rank of Stein algebras. Publ. Res. Inst. Math. Sci. 55(1), 109–121 (2019)

Cohn, P.M.: On the structure of the $${\rm GL}_{2}$$ GL 2 of a ring. Inst. Hautes Études Sci. Publ. Math. 30, 5–53 (1966)

Corach, G., Suárez, F.D.: Stable rank in holomorphic function algebras. Ill. J. Math. 29(4), 627–639 (1985)

Corach, G., Suárez, F.D.: Dense morphisms in commutative Banach algebras. Trans. Am. Math. Soc. 304(2), 537–547 (1987)

Dennis, R.K., Vaserstein, L.N.: On a question of M. Newman on the number of commutators. J. Algebra 118(1), 150–161 (1988)

Florack, H.: Reguläre und meromorphe Funktionen auf nicht geschlossenen Riemannschen Flächen. Schr. Math. Inst. Univ. Münster 1948(1), 34 (1948)

Forstnerič, F.: Stein manifolds and holomorphic mappings. The homotopy principle in complex analysis. In: Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 56, 2nd edn. Springer, Berlin (2017)

Ivarsson, B., Kutzschebauch, F.: Holomorphic factorization of mappings into $${\rm SL}_n(\mathbb{C})$$ SL n ( C ) . Ann. Math. (2) 175(1), 45–69 (2012)

Ivarsson, B., Kutzschebauch, F.: On the number of factors in the unipotent factorization of holomorphic mappings into $${\rm SL}_2(\mathbb{C})$$ SL 2 ( C ) . Proc. Am. Math. Soc. 140(3), 823–838 (2012)

Jones, P.W., Marshall, D., Wolff, T.: Stable rank of the disc algebra. Proc. Am. Math. Soc. 96(4), 603–604 (1986)

Milnor, J.: Introduction to Algebraic $$K$$ K -Theory. Annals of Mathematics Studies, vol. 72. Princeton University Press, Princeton (1971)

Mortini, R.: An example of a subalgebra of $$H^\infty $$ H ∞ on the unit disk whose stable rank is not finite. Stud. Math. 103(3), 275–281 (1992)

Mortini, R., Rupp, R.: Logarithms and exponentials in the matrix algebra $$\cal{M}_2(A)$$ M 2 ( A ) . Comput. Methods Funct. Theory 18(1), 53–87 (2018)

Mortini, R., Sasane, A., Wick, B.D.: The corona theorem and stable rank for the algebra $$\mathbb{C}+BH^\infty $$ C + B H ∞ . Houston J. Math. 36(1), 289–302 (2010)

Mortini, R., Wick, B.D.: The Bass and topological stable ranks of $$H^\infty _{\mathbb{R}}(\mathbb{D})$$ H R ∞ ( D ) and $$A_{\mathbb{R}}(\mathbb{D})$$ A R ( D ) . J. Reine Angew. Math. 636, 175–191 (2009)

Mortini, R., Wick, B.D.: Spectral characteristics and stable ranks for the Sarason algebra $$H^\infty +C$$ H ∞ + C . Mich. Math. J. 59(2), 395–409 (2010)

Remmert, R.: Funktionentheorie. II, Grundwissen Mathematik [Basic Knowledge in Mathematics], vol. 6. Springer, Berlin (1991)

Suslin, A.A.: The structure of the special linear group over rings of polynomials. Izv. Akad. Nauk SSSR Ser. Mat. 41(2), 235–252, 477; English Translation: Math. USSR Izv. 11 (1977), 221–238 (1977)

Tolokonnikov, V.: Stable rank of $$H^\infty $$ H ∞ in multiply connected domains. Proc. Am. Math. Soc. 123(10), 3151–3156 (1995)

Treil, S.: The stable rank of the algebra $$H^\infty $$ H ∞ equals $$1$$ 1 . J. Funct. Anal. 109(1), 130–154 (1992)