Facing Low Regularity in Chemotaxis Systems
Tóm tắt
Từ khóa
Tài liệu tham khảo
Alt, W., Hoffmann, G.: In: Biological Motion: Proceedings of a Workshop Held in Königswinter, Germany, March 16–19, 1989 vol. 89. Springer, Berlin (2013)
Bebernes, J., Eberly, D.: A description of self-similar blow-up for dimensions $n\geq 3$. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 5(1), 1–21 (1988)
Bellomo, N., Winkler, M.: A degenerate chemotaxis system with flux limitation: maximally extended solutions and absence of gradient blow-up. Commun. Partial Differ. Equ. 42(3), 436–473 (2017)
Bellomo, N., Winkler, M.: Finite-time blow-up in a degenerate chemotaxis system with flux limitation. Transl. Am. Math. Soc. Ser. B 4, 31–67 (2017)
Bellomo, N., Bellouquid, A., Nieto, J., Soler, J.: Multiscale biological tissue models and flux-limited chemotaxis for multicellular growing systems. Math. Models Methods Appl. Sci. 20(7), 1179–1207 (2010)
Bellomo, N., Bellouquid, A., Nieto, J., Soler, J.: On the asymptotic theory from microscopic to macroscopic growing tissue models: an overview with perspectives. Math. Models Methods Appl. Sci. 22(1), 1130001 (2012), 37
Bellomo, N., Bellouquid, A., Tao, Y., Winkler, M.: Toward a mathematical theory of Keller–Segel models of pattern formation in biological tissues. Math. Models Methods Appl. Sci. 25(09), 1663–1763 (2015)
Biler, P.: Existence and nonexistence of solutions for a model of gravitational interaction of particles. III. Colloq. Math. 68(2), 229–239 (1995)
Biler, P.: Local and global solvability of some parabolic systems modelling chemotaxis. Adv. Math. Sci. Appl. 8(2), 715–743 (1998)
Biler, P.: Radially symmetric solutions of a chemotaxis model in the plane—the supercritical case. In: Parabolic and Navier-Stokes Equations. Part 1. Banach Center Publ., vol. 81, pp. 31–42. Polish Acad. Sci. Inst. Math, Warsaw (2008)
Biler, P.: Radially symmetric solutions of a chemotaxis model in the plane—the supercritical case. In: Parabolic and Navier-Stokes Equations. Part 1. Banach Center Publ., vol. 81, pp. 31–42. Polish Acad. Sci. Inst. Math, Warsaw (2008)
Biler, P., Nadzieja, T.: Existence and nonexistence of solutions for a model of gravitational interaction of particles. I. Colloq. Math. 66(2), 319–334 (1994)
Biler, P., Zienkiewicz, J.: Blowing up radial solutions in the minimal Keller-Segel model of chemotaxis. J. Evol. Equ. 19(1), 71–90 (2019)
Biler, P., Hilhorst, D., Nadzieja, T.: Existence and nonexistence of solutions for a model of gravitational interaction of particles. II. Colloq. Math. 67(2), 297–308 (1994)
Biler, P., Karch, G., Laurençot, P., Nadzieja, T.: The $8\pi $-problem for radially symmetric solutions of a chemotaxis model in the plane. Math. Methods Appl. Sci. 29(13), 1563–1583 (2006)
Biler, P., Espejo, E.E., Guerra, I.: Blowup in higher dimensional two species chemotactic systems. Commun. Pure Appl. Anal. 12(1), 89–98 (2013)
Biler, P., Karch, G., Zienkiewicz, J.: Optimal criteria for blowup of radial and $N$-symmetric solutions of chemotaxis systems. Nonlinearity 28(12), 4369–4387 (2015)
Black, T.: Eventual smoothness of generalized solutions to a singular chemotaxis-Stokes system in 2D. J. Differ. Equ. 265(5), 2296–2339 (2018)
Black, T.: Global very weak solutions to a chemotaxis-fluid system with nonlinear diffusion. SIAM J. Math. Anal. 50(4), 4087–4116 (2018)
Black, T.: Global solvability of chemotaxis-fluid systems with nonlinear diffusion and matrix-valued sensitivities in three dimensions. Nonlinear Anal. 180, 129–153 (2019)
Black, T., Lankeit, J., Mizukami, M.: A Keller-Segel-fluid system with singular sensitivity: generalized solutions. Math. Methods Appl. Sci. 42(9), 3002–3020 (2019)
Blanchet, A., Dolbeault, J., Perthame, B.: Two-dimensional Keller-Segel model: optimal critical mass and qualitative properties of the solutions. Electron. J. Differ. Equ. 44, 32 (2006)
Blanchet, A., Carrillo, J.A., Masmoudi, N.: Infinite time aggregation for the critical Patlak-Keller-Segel model in $\mathbb{R}^{2}$. Commun. Pure Appl. Math. 61(10), 1449–1481 (2008)
Braukhoff, M.: Global (weak) solution of the chemotaxis-Navier–Stokes equations with non-homogeneous boundary conditions and logistic growth. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 34(4), 1013–1039 (2017)
Brenner, M.P., Constantin, P., Kadanoff, L.P., Schenkel, A., Venkataramani, S.C.: Diffusion, attraction and collapse. Nonlinearity 12(4), 1071–1098 (1999)
Burczak, J., Cieślak, T., Morales-Rodrigo, C.: Global existence vs. blowup in a fully parabolic quasilinear 1D Keller-Segel system. Nonlinear Anal. 75(13), 5215–5228 (2012)
Calvez, V., Corrias, L., Ebde, M.A.: Blow-up, concentration phenomenon and global existence for the Keller-Segel model in high dimension. Commun. Partial Differ. Equ. 37(4), 561–584 (2012)
Cao, X.: An interpolation inequality and its application in Keller-Segel model (2017). arXiv:1707.09235v2
Cao, X., Ishida, S.: Global-in-time bounded weak solutions to a degenerate quasilinear Keller-Segel system with rotation. Nonlinearity 27(8), 1899–1913 (2014)
Cazenave, T., Dickstein, F., Weissler, F.: Finite-time blowup for a complex Ginzburg-Landau equation. SIAM J. Math. Anal. 45(1), 244–266 (2013)
Chaplain, M.A., Lolas, G.: Mathematical modelling of cancer invasion of tissue: dynamic heterogeneity. Netw. Heterog. Media 1(3), 399–439 (2006)
Chen, L., Wang, J.: Exact criterion for global existence and blow up to a degenerate Keller-Segel system. Doc. Math. 19, 103–120 (2014)
Chung, Y.-S., Kang, K.: Existence of global solutions for a chemotaxis-fluid system with nonlinear diffusion. J. Math. Phys. 57(4), 041503 (2016)
Chung, Y.-S., Kang, K., Kim, J.: Global existence of weak solutions for a Keller–Segel-fluid model with nonlinear diffusion. J. Korean Math. Soc. 51(3), 635–654 (2014)
Cieślak, T., Laurençot, P.: Finite time blow-up for radially symmetric solutions to a critical quasilinear Smoluchowski–Poisson system. C. R. Math. Acad. Sci. Paris 347(5–6), 237–242 (2009)
Cieślak, T., Laurençot, P.: Finite time blow-up for a one-dimensional quasilinear parabolic-parabolic chemotaxis system. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 27(1), 437–446 (2010)
Cieślak, T., Stinner, C.: Finite-time blowup and global-in-time unbounded solutions to a parabolic-parabolic quasilinear Keller-Segel system in higher dimensions. J. Differ. Equ. 252(10), 5832–5851 (2012)
Cieślak, T., Stinner, C.: Finite-time blowup in a supercritical quasilinear parabolic-parabolic Keller-Segel system in dimension 2. Acta Appl. Math. 129, 135–146 (2014)
Cieślak, T., Stinner, C.: New critical exponents in a fully parabolic quasilinear Keller-Segel system and applications to volume filling models. J. Differ. Equ. 258(6), 2080–2113 (2015)
Cieślak, T., Winkler, M.: Finite-time blow-up in a quasilinear system of chemotaxis. Nonlinearity 21(5), 1057–1076 (2008)
Cieślak, T., Laurençot, P., Morales-Rodrigo, C.: Global existence and convergence to steady states in a chemorepulsion system. In: Parabolic and Navier-Stokes Equations. Part 1. Banach Center Publ., vol. 81, pp. 105–117. Polish Acad. Sci. Inst. Math, Warsaw (2008)
DiPerna, R.J., Lions, P.-L.: On the Cauchy problem for Boltzmann equations: global existence and weak stability. Ann. Math. 130(2), 321–366 (1989)
Dombrowski, C., Cisneros, L., Chatkaew, S., Goldstein, R.E., Kessler, J.O.: Self-concentration and large-scale coherence in bacterial dynamics. Phys. Rev. Lett. 93, 098103 (2004)
Dong, Y., Xiang, Z.: Global large-data generalized solutions in a chemotactic movement with rotational flux caused by two stimuli. Nonlinear Anal., Real World Appl. 41, 549–569 (2018)
Duan, R., Xiang, Z.: A note on global existence for the chemotaxis-Stokes model with nonlinear diffusion. Int. Math. Res. Not. 7, 1833–1852 (2014)
Espejo, E., Suzuki, T.: Global existence and blow-up for a system describing the aggregation of microglia. Appl. Math. Lett. 35, 29–34 (2014)
Espejo, E.E., Stevens, A., Suzuki, T.: Simultaneous blowup and mass separation during collapse in an interacting system of chemotactic species. Differ. Integral Equ. 25(3–4), 251–288 (2012)
Feireisl, E., Laurençot, P., Petzeltová, H.: On convergence to equilibria for the Keller-Segel chemotaxis model. J. Differ. Equ. 236(2), 551–569 (2007)
Freitag, M.: Blow-up profiles and refined extensibility criteria in quasilinear Keller-Segel systems. J. Math. Anal. Appl. 463(2), 964–988 (2018)
Fuest, M.: Finite-time blow-up in a two-dimensional Keller–Segel system with an environmental dependent logistic source. Nonlinear Anal.: Real World Appl. 52 103022 (2020). https://doi.org/10.1016/j.nonrwa.2019.103022
Fujie, K., Senba, T.: Blowup of solutions to a two-chemical substances chemotaxis system in the critical dimension. J. Differ. Equ. 266(2–3), 942–976 (2019)
Fujikawa, H., Matsushita, M.: Fractal growth of bacillus subtilis on agar plates. J. Phys. Soc. Jpn. 58(11), 3875–3878 (1989)
Ghoul, T.-E., Masmoudi, N.: Minimal mass blowup solutions for the Patlak-Keller-Segel equation. Commun. Pure Appl. Math. 71(10), 1957–2015 (2018)
Giga, Y., Mizoguchi, N., Senba, T.: Asymptotic behavior of type I blowup solutions to a parabolic-elliptic system of drift-diffusion type. Arch. Ration. Mech. Anal. 201(2), 549–573 (2011)
Guerra, I.A., Peletier, M.A.: Self-similar blow-up for a diffusion-attraction problem. Nonlinearity 17(6), 2137–2162 (2004)
Harada, G., Nagai, T., Senba, T., Suzuki, T.: Concentration lemma, Brezis-Merle type inequality, and a parabolic system of chemotaxis. Adv. Differ. Equ. 6, 10 (2001)
Hashira, T., Ishida, S., Yokota, T.: Finite-time blow-up for quasilinear degenerate Keller-Segel systems of parabolic-parabolic type. J. Differ. Equ. 264(10), 6459–6485 (2018)
Herrero, M.A., Velázquez, J.J.L.: Blow-up profiles in one-dimensional, semilinear parabolic problems. Commun. Partial Differ. Equ. 17(1–2), 205–219 (1992)
Herrero, M.A., Velázquez, J.J.L.: Chemotactic collapse for the Keller-Segel model. J. Math. Biol. 35(2), 177–194 (1996)
Herrero, M.A., Velázquez, J.J.L.: Singularity patterns in a chemotaxis model. Math. Ann. 306(3), 583–623 (1996)
Herrero, M.A., Velázquez, J.J.L.: A blow-up mechanism for a chemotaxis model. Ann. Sc. Norm. Super. Pisa, Cl. Sci. (4) 24(4), 633–683 (1997)
Herrero, M.A., Medina, E., Velázquez, J.J.L.: Self-similar blow-up for a reaction-diffusion system. J. Comput. Appl. Math. 97(1–2), 99–119 (1998)
Hillen, T., Painter, K.J.: A user’s guide to PDE models for chemotaxis. J. Math. Biol. 58(1–2), 183–217 (2009)
Horstmann, D.: From 1970 until present: the Keller-Segel model in chemotaxis and its consequences. I. Jahresber. Dtsch. Math.-Ver. 105(3), 103–165 (2003)
Horstmann, D.: From 1970 until present: the Keller-Segel model in chemotaxis and its consequences. II. Jahresber. Dtsch. Math.-Ver. 106(2), 51–69 (2004)
Horstmann, D., Wang, G.: Blow-up in a chemotaxis model without symmetry assumptions. Eur. J. Appl. Math. 12(2), 159–177 (2001)
Horstmann, D., Winkler, M.: Boundedness vs. blow-up in a chemotaxis system. J. Differ. Equ. 215(1), 52–107 (2005)
Ishida, S., Yokota, T.: Global existence of weak solutions to quasilinear degenerate Keller-Segel systems of parabolic-parabolic type. J. Differ. Equ. 252(2), 1421–1440 (2012)
Ishida, S., Yokota, T.: Blow-up in finite or infinite time for quasilinear degenerate Keller-Segel systems of parabolic-parabolic type. Discrete Contin. Dyn. Syst., Ser. B 18(10), 2569–2596 (2013)
Ishige, K., Laurençot, P., Mizoguchi, N.: Blow-up behavior of solutions to a degenerate parabolic-parabolic Keller-Segel system. Math. Ann. 367(1–2), 461–499 (2017)
Jäger, W., Luckhaus, S.: On explosions of solutions to a system of partial differential equations modelling chemotaxis. Trans. Am. Math. Soc. 329(2), 819–824 (1992)
Jin, H.-Y., Wang, Z.-A.: Boundedness, blowup and critical mass phenomenon in competing chemotaxis. J. Differ. Equ. 260(1), 162–196 (2016)
Kavallaris, N.I., Souplet, Ph.: Grow-up rate and refined asymptotics for a two-dimensional Patlak-Keller-Segel model in a disk. SIAM J. Math. Anal. 40(5), 1852–1881 (2008/09)
Keller, E.F., Segel, L.A.: Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26(3), 399–415 (1970)
Kozono, H., Sugiyama, Y.: Local existence and finite time blow-up of solutions in the 2-D Keller-Segel system. J. Evol. Equ. 8(2), 353–378 (2008)
Kurokiba, M., Ogawa, T.: Finite time blow-up of the solution for a nonlinear parabolic equation of drift-diffusion type. Differ. Integral Equ. 16(4), 427–452 (2003)
Lankeit, J.: Eventual smoothness and asymptotics in a three-dimensional chemotaxis system with logistic source. J. Differ. Equ. 258(4), 1158–1191 (2015)
Lankeit, J.: Long-term behaviour in a chemotaxis-fluid system with logistic source. Math. Models Methods Appl. Sci. 26(11), 2071–2109 (2016)
Lankeit, J.: Locally bounded global solutions to a chemotaxis consumption model with singular sensitivity and nonlinear diffusion. J. Differ. Equ. 262(7), 4052–4084 (2017)
Lankeit, J.: Infinite time blow-up of many solutions to a general quasilinear parabolic-elliptic Keller-Segel system. Discrete Contin. Dyn. Syst., Ser. S 0(0), 233–255 (2020)
Lankeit, E., Lankeit, J.: On the global generalized solvability of a chemotaxis model with signal absorption and logistic growth terms. Nonlinearity 32(5), 1569–1596 (2019)
Lankeit, J., Winkler, M.: A generalized solution concept for the Keller-Segel system with logarithmic sensitivity: global solvability for large nonradial data. Nonlinear Differ. Equ. Appl. 24(4), 49 (2017)
Laurençot, P., Mizoguchi, N.: Finite time blowup for the parabolic-parabolic Keller-Segel system with critical diffusion. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 34(1), 197–220 (2017)
Li, Y., Li, Y.: Finite-time blow-up in higher dimensional fully-parabolic chemotaxis system for two species. Nonlinear Anal. 109, 72–84 (2014)
Li, Y., Li, Y.: Blow-up of nonradial solutions to attraction–repulsion chemotaxis system in two dimensions. Nonlinear Anal., Real World Appl. 30, 170–183 (2016)
Li, X., Wang, Y., Xiang, Z.: Global existence and boundedness in a 2D Keller-Segel-Stokes system with nonlinear diffusion and rotational flux. Commun. Math. Sci. 14(7), 1889–1910 (2016)
Lin, K., Xiang, T.: On global solutions and blow-up for a short-ranged chemical signaling loop. J. Nonlinear Sci. 29(2), 551–591 (2019)
Lin, K., Mu, C., Gao, Y.: Boundedness and blow up in the higher-dimensional attraction-repulsion chemotaxis system with nonlinear diffusion. J. Differ. Equ. 261(8), 4524–4572 (2016)
Lin, K., Mu, C., Zhong, H.: A blow-up result for a quasilinear chemotaxis system with logistic source in higher dimensions. J. Math. Anal. Appl. 464(1), 435–455 (2018)
Liu, W.X.: Blow-up behavior for semilinear heat equations: multi-dimensional case. Rocky Mt. J. Math. 23(4), 1287–1319 (1993)
Liu, J., Wang, Y.: Global weak solutions in a three-dimensional Keller-Segel-Navier-Stokes system involving a tensor-valued sensitivity with saturation. J. Differ. Equ. 262(10), 5271–5305 (2017)
Luckhaus, S., Sugiyama, Y., Velázquez, J.J.L.: Measure valued solutions of the 2D Keller-Segel system. Arch. Ration. Mech. Anal. 206(1), 31–80 (2012)
Matsushita, M., Fujikawa, H.: Diffusion-limited growth in bacterial colony formation. Physica A 168(1), 498–506 (1990)
Merle, F., Raphael, P.: The blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schrödinger equation. Ann. Math. 161(1), 157–222 (2005)
Merle, F., Zaag, H.: Refined uniform estimates at blow-up and applications for nonlinear heat equations. Geom. Funct. Anal. 8(6), 1043–1085 (1998)
Merle, F., Zaag, H.: Existence and classification of characteristic points at blow-up for a semilinear wave equation in one space dimension. Am. J. Math. 134(3), 581–648 (2012)
Mizoguchi, N., Winkler, M.: Blow-up in the two-dimensional parabolic Keller-Segel system (2013). preprint
Mizukami, M.: How strongly does diffusion or logistic-type degradation affect existence of global weak solutions in a chemotaxis-Navier-Stokes system? Z. Angew. Math. Phys. 70(2):Art, 49, 27 (2019)
Murray, J.D.: Mathematical Biology. II. Spatial Models and Biomedical Applications, 3rd edn. Interdisciplinary Applied Mathematics, vol. 18. Springer, New York (2003)
Nagai, T.: Blow-up of radially symmetric solutions to a chemotaxis system. Adv. Math. Sci. Appl. 5(2), 581–601 (1995)
Nagai, T.: Blowup of nonradial solutions to parabolic-elliptic systems modeling chemotaxis in two-dimensional domains. J. Inequal. Appl. 6, 1 (2001)
Nagai, T., Senba, T.: Global existence and blow-up of radial solutions to a parabolic-elliptic system of chemotaxis. Adv. Math. Sci. Appl. 8(1), 145–156 (1998)
Nagai, T., Senba, T., Yoshida, K.: Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis. Funkc. Ekvacioj 40(3), 411–433 (1997)
Nagai, T., Senba, T., Suzuki, T.: Chemotactic collapse in a parabolic system of mathematical biology. Hiroshima Math. J. 30(3), 463–497 (2000)
Naito, Y., Senba, T.: Self-similar blow-up for a chemotaxis system in higher dimensional domains. In: Mathematical Analysis on the Self-Organization and Self-Similarity. RIMS Kôkyûroku Bessatsu, vol. B15, pp. 87–99. Res. Inst. Math. Sci. (RIMS), Kyoto (2009)
Ohtsuka, H., Senba, T., Suzuki, T.: Blowup in infinite time in the simplified system of chemotaxis. Adv. Math. Sci. Appl. 17(2), 445–472 (2007)
Osaki, K., Tsujikawa, T., Yagi, A., Mimura, M.: Exponential attractor for a chemotaxis-growth system of equations. Nonlinear Anal. 51(1), 119–144 (2002)
Painter, K.J.: Mathematical models for chemotaxis and their applications in self-organisation phenomena. J. Theor. Biol. 481, 162–182 (2018)
Painter, K.J., Maini, P.K., Othmer, H.G.: Development and applications of a model for cellular response to multiple chemotactic cues. J. Math. Biol. 41(4), 285–314 (2000)
Peng, Y., Xiang, Z.: Global existence and boundedness in a 3D Keller-Segel-Stokes system with nonlinear diffusion and rotational flux. Z. Angew. Math. Phys. 68(3):Art, 68, 26 (2017)
Schweyer, R.: Stable blow-up dynamic for the parabolic-parabolic Patlak-Keller-Segel model (2014). arXiv:1403.4975
Senba, T.: Blowup behavior of radial solutions to Jäger-Luckhaus system in high dimensional domains. Funkc. Ekvacioj 48(2), 247–271 (2005)
Senba, T.: A fast blowup solution to an elliptic-parabolic system related to chemotaxis. Adv. Differ. Equ. 11, 9 (2006)
Senba, T., Suzuki, T.: Chemotactic collapse in a parabolic-elliptic system of mathematical biology. Adv. Differ. Equ. 6, 1 (2001)
Senba, T., Suzuki, T.: Parabolic system of chemotaxis: blowup in a finite and the infinite time. Methods Appl. Anal. 8(2), 349–367 (2001), IMS Workshop on Reaction-Diffusion Systems (Shatin, 1999)
Souplet, Ph., Winkler, M.: Blow-up profiles for the parabolic–elliptic Keller–Segel system in dimensions $n\geq 3$. Commun. Math. Phys. 367(2), 665–681 (2019)
Stancevic, O., Angstmann, C., Murray, J.M., Henry, B.I.: Turing patterns from dynamics of early hiv infection. Bull. Math. Biol. 75(5), 774–795 (2013)
Stinner, C., Surulescu, C., Winkler, M.: Global weak solutions in a PDE-ODE system modeling multiscale cancer cell invasion. SIAM J. Math. Anal. 46(3), 1969–2007 (2014)
Sugiyama, Y., Kunii, H.: Global existence and decay properties for a degenerate Keller-Segel model with a power factor in drift term. J. Differ. Equ. 227(1), 333–364 (2006)
Sugiyama, Y., Velázquez, J.J.L.: Self-similar blow up with a continuous range of values of the aggregated mass for a degenerate Keller-Segel system. Adv. Differ. Equ. 16, 1–2 (2011)
Suzuki, T.: Exclusion of boundary blowup for 2D chemotaxis system provided with Dirichlet boundary condition for the Poisson part. J. Math. Pures Appl. (9) 100(3), 347–367 (2013)
Suzuki, T.: Free Energy and Self-Interacting Particles. Birkhäuser, Boston (2005). https://doi.org/10.1007/0-8176-4436-9
Szymańska, Z., Morales Rodrigo, C., Łachowicz, M., Chaplain, M.A.J.: Mathematical modelling of cancer invasion of tissue: the role and effect of nonlocal interactions. Math. Models Methods Appl. Sci. 19(2), 257–281 (2009)
Tao, T.: Finite time blowup for an averaged three-dimensional Navier-Stokes equation. J. Am. Math. Soc. 29(3), 601–674 (2016)
Tao, Y., Wang, M.: A combined chemotaxis-haptotaxis system: the role of logistic source. SIAM J. Math. Anal. 41(4), 1533–1558 (2009)
Tao, Y., Wang, Z.-A.: Competing effects of attraction vs. repulsion in chemotaxis. Math. Models Methods Appl. Sci. 23(1), 1–36 (2013)
Tao, Y., Winkler, M.: Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity. J. Differ. Equ. 252(1), 692–715 (2012)
Tao, Y., Winkler, M.: Eventual smoothness and stabilization of large-data solutions in a three-dimensional chemotaxis system with consumption of chemoattractant. J. Differ. Equ. 252(3), 2520–2543 (2012)
Tao, Y., Winkler, M.: Locally bounded global solutions in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 30(1), 157–178 (2013)
Tao, Y., Winkler, M.: Critical mass for infinite-time aggregation in a chemotaxis model with indirect signal production. J. Eur. Math. Soc. 19(12), 3641–3678 (2017)
Velázquez, J.J.L.: Higher-dimensional blow up for semilinear parabolic equations. Commun. Partial Differ. Equ. 17(9–10), 1567–1596 (1992)
Velázquez, J.J.L.: Point dynamics in a singular limit of the Keller-Segel model. I. motion of the concentration regions. SIAM J. Appl. Math. 64(4), 1198–1223 (2004)
Viglialoro, G.: Very weak global solutions to a parabolic-parabolic chemotaxis-system with logistic source. J. Math. Anal. Appl. 439(1), 197–212 (2016)
Wang, Y.: Global large-data generalized solutions in a two-dimensional chemotaxis-Stokes system with singular sensitivity. Bound. Value Probl. 177, 24 (2016)
Wang, Y.: Global weak solutions in a three-dimensional Keller-Segel-Navier-Stokes system with subcritical sensitivity. Math. Models Methods Appl. Sci. 27(14), 2745–2780 (2017)
Wang, Y., Li, X.: Boundedness for a 3D chemotaxis-Stokes system with porous medium diffusion and tensor-valued chemotactic sensitivity. Z. Angew. Math. Phys. 68(2):Art(29), 23 (2017)
Wang, Z.-A., Winkler, M., Wrzosek, D.: Singularity formation in chemotaxis systems with volume-filling effect. Nonlinearity 24(12), 3279–3297 (2011)
Winkler, M.: Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source. Commun. Partial Differ. Equ. 35(8), 1516–1537 (2010)
Winkler, M.: Does a ‘volume-filling effect’ always prevent chemotactic collapse? Math. Methods Appl. Sci. 33(1), 12–24 (2010)
Winkler, M.: Blow-up in a higher-dimensional chemotaxis system despite logistic growth restriction. J. Math. Anal. Appl. 384(2), 261–272 (2011)
Winkler, M.: Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system. J. Math. Pures Appl. (9) 100(5), 748–767 (2013)
Winkler, M.: Large-data global generalized solutions in a chemotaxis system with tensor-valued sensitivities. SIAM J. Math. Anal. 47(4), 3092–3115 (2015)
Winkler, M.: The two-dimensional Keller-Segel system with singular sensitivity and signal absorption: global large-data solutions and their relaxation properties. Math. Models Methods Appl. Sci. 26(5), 987–1024 (2016)
Winkler, M.: Global existence and slow grow-up in a quasilinear Keller-Segel system with exponentially decaying diffusivity. Nonlinearity 30(2), 735–764 (2017)
Winkler, M.: Global mass-preserving solutions in a two-dimensional chemotaxis-Stokes system with rotational flux components. J. Evol. Equ. 18(3), 1267–1289 (2018)
Winkler, M.: How unstable is spatial homogeneity in Keller-Segel systems? A new critical mass phenomenon in two- and higher-dimensional parabolic-elliptic cases. Math. Ann. 373(3–4), 1237–1282 (2018)
Winkler, M.: Finite-time blow-up in low-dimensional Keller-Segel systems with logistic-type superlinear degradation. Z. Angew. Math. Phys. 69(2), 69 (2019)
Winkler, M.: Global classical solvability and generic infinite-time blow-up in quasilinear Keller–Segel systems with bounded sensitivities. J. Differ. Equ. 266(12), 8034–8066 (2019)
Winkler, M.: Blow-up profiles and life beyond blow-up in the fully parabolic Keller-Segel system. J. Anal. Math. (2019, in press)
Winkler, M., Djie, K.C.: Boundedness and finite-time collapse in a chemotaxis system with volume-filling effect. Nonlinear Anal. 72(2), 1044–1064 (2010)
Woodward, D., Tyson, R., Myerscough, M., Murray, J., Budrene, E., Berg, H.: Spatio-temporal patterns generated by salmonella typhimurium. Biophys. J. 68(5), 2181–2189 (1995)
Xiang, T.: Sub-logistic source can prevent blow-up in the 2D minimal Keller-Segel chemotaxis system. J. Math. Phys. 59(8), 081502 (2018),
Xue, C., Othmer, H.G.: Multiscale models of taxis-driven patterning in bacterial populations. SIAM J. Appl. Math. 70(1), 133–167 (2009)
Yan, J., Li, Y.: Global generalized solutions to a Keller-Segel system with nonlinear diffusion and singular sensitivity. Nonlinear Anal. 176, 288–302 (2018)
Yu, H., Wang, W., Zheng, S.: Criteria on global boundedness versus finite time blow-up to a two-species chemotaxis system with two chemicals. Nonlinearity 31(2), 502–514 (2018)
Zhang, Q., Li, Y.: Global weak solutions for the three-dimensional chemotaxis-Navier-Stokes system with nonlinear diffusion. J. Differ. Equ. 259(8), 3730–3754 (2015)
Zhao, J., Mu, C., Wang, L., Zhou, D.: Blow up and bounded solutions in a two-species chemotaxis system in two dimensional domains. Acta Appl. Math. 153, 197–220 (2018)
Zheng, J.: Global weak solutions in a three-dimensional Keller-Segel-Navier-Stokes system with nonlinear diffusion. J. Differ. Equ. 263(5), 2606–2629 (2017)
Zhigun, A.: Generalised supersolutions with mass control for the Keller-Segel system with logarithmic sensitivity. J. Math. Anal. Appl. 467(2), 1270–1286 (2018)