Phương Pháp Dễ Dàng Chế Tạo Các Lớp Phủ Dựa Trên Nhựa Siêu Kỵ Nước Với Nhiệt Độ Đóng Băng Nước Thấp Hơn Và Độ Bám Dính Băng Để Ứng Dụng Chống Đóng Băng

Journal of Bionic Engineering - Tập 16 - Trang 794-805 - 2019
Weilan Liu1, Haifeng Chen2, Yizhou Shen3, Zhengwei Wu3
1Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing, China
2Department of Materials Chemistry, Qiuzhen School, Huzhou University, Huzhou, China
3College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China

Tóm tắt

Công trình này tập trung vào việc phát triển một chiến lược dễ dàng nhằm chế tạo lớp phủ siêu kỵ nước, được đặc trưng bởi nhiệt độ đóng băng nước thấp hơn và độ bám dính băng thấp hơn. Đầu tiên, một loại vật liệu nhựa dựa trên axit polyacrylic (PAA) được tổng hợp làm ma trận lớp phủ. Sau đó, các hạt nano SiO2 được sửa đổi chức năng được bổ sung để điều chỉnh hình thái bề mặt nhằm đạt được tính siêu kỵ nước lý tưởng. Các lớp phủ nhựa vừa tổng hợp có lực bám dính mạnh với nền kim loại, và các hình thái bề mặt phân cấp (10 wt% hạt nano SiO2) tạo ra tính siêu kỵ nước vững chắc với góc tiếp xúc với nước cao lên đến 152°. Ngoài ra, các lớp phủ siêu kỵ nước còn được trang bị độ kỵ băng cao, và nhiệt độ đóng băng của giọt nước tham chiếu được giảm xuống còn -20.33°C so với mức -13.83°C trên các lớp phủ không có hạt nano phụ gia. Hơn nữa, độ bám dính băng trên các lớp phủ siêu kỵ nước chỉ đạt 250 kPa, cho thấy khả năng đẩy băng tuyệt vời.

Từ khóa

#siêu kỵ nước #lớp phủ #axit polyacrylic #nano SiO2 #độ bám dính băng #nhiệt độ đóng băng

Tài liệu tham khảo

Lv J, Song Y, Jiang L, Wang J. Bio-inspired strategies for anti-icing. ACS Nano, 2014, 8, 3152–3169. Zhu C L, Liu S Y, Shen Y Z, Tao J, Wang G Y, Pan L. Verifying the deicing capacity of superhydrophobic anti-icing surfaces based on wind and thermal fields. Surface & Coating Technology, 2017, 309, 703–708. Antonini C, Innocenti M, Horn T, Marengo M, Amirfazli A. Understanding the effect of superhydrophobic coatings on energy reduction in anti-icing systems. Cold Regions Science and Technology, 2011, 67, 58–67. Liu Q, Yang Y, Huang M, Zhou Y X, Liu Y Y, Liang X D. Durability of a lubricant-infused electrospray silicon rubber surface as an anti-icing coating. Applied Surface Science, 2015, 346, 68–76. Etemaddar M, Hansen M O L, Moan T. Wind turbine aerodynamic response under atmospheric icing conditions. Wind Energy, 2014, 17, 241–265. Cober S G, Isaac G A. Characterization of aircraft icing environments with supercooled large drops for application to commercial aircraft certification. Journal of Applied Meteorology Climatology, 2012, 51, 265–284. Yu W B, Yi X, Guo M, Chen L. State of the art and practice of pavement anti-icing and de-icing techniques. Sciences in Cold and Arid Regions, 2014, 6, 14–21. Habibi H, Cheng L, Zheng H, Kappatos V, Selcuk C, Gan T. A dual de-icing system for wind turbine blades combining high-power ultrasonic guided waves and low-frequency forced vibrations. Renew Energy, 2015, 83, 859–870. Shen Y Z, Wang G Y, Tao J, Zhu C L, Liu S Y, Jin M M, Xie Y H, Chen Z. Anti-icing performance of superhydrophobic texture surfaces depending on reference environments. Advanced Materials Interfaces, 2017, 4, 1700836. Zhao H M, Wu Z M, Wang S G, Zheng J J, Che G. J Concrete pavement deicing with carbon fiber heating wires. Cold Regions Science and Technology, 2011, 65, 413–420. Gomis J, Galao O, Gomis V, Zornoza E, Garcésa P. Self-heating and deicing conductive cement. Experimental study and modeling. Construction and Building Materials, 2015, 75, 442–449. Chu H T, Zhang Z C, Liu Y J, Leng J S. Self-heating fiber reinforced polymer composite using meso/macropore carbon nanotube paper and its application in deicing. Carbon, 2014, 66, 154–163. Zhang K, Han B G, Yu X. Nickel particle based electrical resistance heating cementitious composites. Cold Regions Science and Technology, 2011, 69, 64–69 McNeill K S, Cancilla D A. Detection of triazole deicing additives in soil samples from airports with low, mid, and large volume aircraft deicing activities. Bulletin of Environmental Contamination and Toxicology, 2009, 82, 265–269. Li S H, Huang J Y, Ge M Z, Li S W, Tang T L, Chen G Q, Liu Y Q, Zhang K Q, Al-Deyab S S, Lai Y K. Controlled grafting superhydrophobic cellulose surface with environmentally -friendly short fluoroalkyl chains by ATRP. Materials & Design, 2015, 85, 815–822. Shen Y Z, Tao H J, Chen S L, Zhu L M, Wang T, Tao J. Icephobic/anti-icing potential of superhydrophobic Ti6Al4V surfaces with hierarchical textures. RSC Advances, 2015, 5, 1666–1672. Godeau G, Boutet K, Mortier C, Laugier J P, Guittard F, Darmanin T. One-pot staudinger ureation reaction to develop superhydrophobic/oleophobic surfaces with urea linkers. Materials & Design, 2017, 114, 116–122. Shen Y Z, Wu X H, Tao J, Zhu C L, Lai Y K, Chen Z. Icephobic materials: Fundamentals, performance evaluation, and applications. Progress in Materials Science, 2019, 103, 509–577. Farhadi S, Farzaneh M, Kulinich S A. Anti-icing performance of superhydrophobic surfaces. Applied Surface Science, 2011, 257, 6264–6269. Zhang S N, Huang J Y, Cheng Y, Yang H, Chen Z, Lai Y K. Bioinspired with superwettability for anti-icing & ice-phobic application: Concept, mechanism and design. Small, 2017, 13, 1701867. Shen Y Z, Tao J, Tao H J, Chen S L, Pan L, Wang T. Anti-icing potential of superhydrophobic Ti6Al4V surfaces: Ice nucleation and growth. Langmuir, 2015, 31, 10799–10806. Li Y, Li L, Sun J Q. Bioinspired self-healing superhydrophobic coatings. Angewandte Chemie International Edition, 2010, 122, 6265–6269. Shen Y Z, Liu S Y, Zhu C L, Tao J, Wang G Y. Facile fabrication of hierarchical structured superhydrophobic surface and its ultra dynamic water repellency. Chemical Engineering Journal, 2017, 313, 47–55. Wang L, Gong Q H, Zhan S H, Jiang L, Zheng Y M. Robust anti-icing performance of a flexible superhydrophobic surface. Advanced Materials, 2016, 28, 7729–7735. Wang Y Y, Xue J, Wang Q J, Chen Q M, Ding J F. Verification of icephobic/anti-icing properties of a superhydrophobic surface. ACS Applied Materials & Interfaces, 2013, 5, 3370–3381. Zhang Q L, He M, Chen J, Wang J J, Song Y L, Jiang L. Anti-icing surfaces based on enhanced self-propelled jumping of condensed water microdroplets. Chemical Communications, 2013, 49, 4516–4518. Xue F, Jia D, Jing X. Facile preparation of a mechanically robust superhydrophobic acrylic polyurethane coating. J. Material Chemistry A, 2015, 3, 13856–13863. Wu X H, Fu Q T, Kumar D, Ho J W C, Kanhere P, Zhou H F, Chen Z. Mechanically robust superhydrophobic and superoleophobic coatings derived by sol-gel method. Materials & Design, 2016, 89, 1302–1309. Rodrigues S P, Alves C F A, Cavaleiro A, Carvalho S. Water and oil wettability of anodized 6016 aluminum alloy surface. Applied Surface Science, 2017, 422, 430–442. Li J, Li Y B, Huang M H, Xiang Y H, Liao Y S. Improvement of aluminum lithium alloy adhesion performance based on sandblasting techniques. International Journal of Adhesion and Adhesives, 2018, 84, 307–316. Shen Y Z, Tao H J, Chen S L, Zhu L M, Wang T, Tao J. Icephobic/anti-icing potential of superhydrophobic Ti6Al4V surfaces with hierarchical textures. RSC Advances, 2015, 5, 1666. Alkan C, Günther E, Hiebler S, Himpel M. Complexing blends of polyacrylic acid-polyethylene glycol and poly(ethylene-co-acrylic acid)-polyethylene glycol as shape stabilized phase change materials. Energy Conversion and Management, 2012, 64, 364–370. Yan H, Yang L Y, Yang Z, Yang H, Li A M, Cheng R S. Preparation of chitosan/poly(acrylic acid) magnetic composite microspheres and applications in the removal of copper (II) ions from aqueous solutions. Journal of Hazardous Materials, 2012, 229–230, 371–380. García S J, Fischer H R, Zwaag S. A critical appraisal of the potential of self healing polymeric coatings. Progress in Organic Coatings, 2011, 72, 211–221. Hong R Y, Li J H, Chen L L, Liu D Q, Li H Z, Zheng Y, Ding J. Synthesis, surface modification and photocatalytic property of ZnO nanoparticles. Powder Technology, 2009, 189, 426–432. Li B B, Liu X Y, Zhang X Y, Zou J C, Chai W B, Xu J. Oil-absorbent polyurethane sponge coated with KH-570-modified graphene. Journal of Applied Polymer Science, 2015, 132, 41821. Dang Z M, Xia Y J, Zha J W, Yuan J K, Bai J B. Preparation and dielectric properties of surface modified TiO2/silicone rubber nanocomposites. Materials Letters, 2011, 65, 3430–3432. Choi W, Tuteja A, Mabry J M, Cohen R E, McKinley G H. A modified Cassie–Baxter relationship to explain contact angle hysteresis and anisotropy on non-wetting textured surfaces. Journal of Colloid and Interface Science, 2009, 339, 208–216. Jiang C, Zhang Y M, Wang Q H, Wang T M. Superhydrophobic polyurethane and silica nanoparticles coating with high transparency and fluorescence. Journal of Applied Polymer Science, 2013, 129, 2959–2965. Zhou H, Wang H X, Niu H T, Gestos A, Wang X G, Lin T. Fluoroalkyl silane modified silicone rubber/nanoparticle composite: A super durable, robust superhydrophobic fabric coating. Advanced Materials, 2012, 24, 2409–2412. Manca M, Cannavale A, Marco L D, Aricò A S, Cingolani R, Gigli G. Durable superhydrophobic and antireflective surfaces by trimethylsilanized silica nanoparticles-based sol-gel processing. Langmuir, 2009, 25, 6357–6362. Hao L, Yu S R, Han X X, Zhang S B. Design of submicron structures with superhydrophobic and oleophobic properties on zinc substrate. Materials & Design, 2015, 85, 653–660. Murray B J, O’Sullivan D, Atkinson J D, Webb M E. Ice nucleation by particles immersed in supercooled cloud droplets. Chemical Society Reviews, 2012, 41, 6519–6554. Li T S, Donadio D, Russo G, Galli G. Homogeneous ice nucleation from supercooled water. Physical Chemistry Chemical Physics, 2011, 13, 19807–19813. Wilson P W, Lu W, Xu H, Kim P, Kreder M J, Alvarenga J, Aizenberg J. Inhibition of ice nucleation by slippery liquid-infused porous surfaces (SLIPS). Physical Chemistry Chemical Physics, 2013, 15, 581–585. Alizadeh A, Yamada M, Li R, Shang W, Otta S, Zhong S, Ge L, Dhinojwala A, Conway K R, Bahadur V, Vinciquerra A J, Stephens B, Blohm M L. Dynamics of ice nucleation on water repellent surfaces. Langmuir, 2012, 28, 3180–3186. Janjua Z A. The influence of freezing and ambient temperature on the adhesion strength of ice. Cold Regions Science and Technology, 2017, 140, 14–19. Nosonovsky M, Hejazi V. Why superhydrophobic surfaces are not always icephobic. ACS Nano, 2012, 6, 8488–8491.