Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Cách tổng hợp dễ dàng Bi2O3 nanoparticle phân tán tốt và rGO làm điện cực âm cho siêu tụ điện
Tóm tắt
Các nanoparticle Bi2O3 được kết hợp với cấu trúc nan giảm graphene oxide (rGO) đã được tổng hợp thông qua phương pháp lắng đọng pha lỏng và thiêu kết, và các thuộc tính siêu tụ điện của chúng đã được nghiên cứu làm vật liệu điện cực âm. Bi2O3/rGO được chuẩn bị đã đạt được dung lượng cực đại lên tới 1423 F g−1 ở mật độ dòng điện 1 A g−1, tính ổn định điện hóa tuyệt vời (duy trì dung lượng 81,8% từ 1 A g−1 đến 10 A g−1) và ổn định lâu dài (duy trì dung lượng 63% sau 5000 vòng lặp). Hiệu suất điện hóa xuất sắc này có thể là do sự hiện diện phong phú của các vị trí hoạt động được cung cấp bởi rGO kết hợp với việc nạp hợp lý các nanoparticle Bi2O3.
Từ khóa
#Bi2O3 #nanocarbon #graphene oxide #siêu tụ điện #hiệu suất điện hóaTài liệu tham khảo
Bao L, Li T, Chen S, Peng C, Li L, Xu Q, Chen Y, Ou E, Xu W (2017) 3D graphene frameworks/Co3O4 composites electrode for high-performance supercapacitor and enzymeless glucose detection. Small 13:1602077–1602085
Chen W, Yu H, Lee S, Wei T, Li J, Fan Z (2018) Electrochemical energy storage devices for wearable technology: a rationale for materials selection and cell design. Chem Soc Rev 47:2837–2872
Chen Y, Zhang W, Wu Q (2017) A highly sensitive room-temperature sensing materials for NH3: SnO2-nanorods coupled by rGO. Sensor Actuat B-Chem 242:1216–1226
Cheng Q, Tang J, Ma J, Zhang H, Shinya N, Qin LC (2011) Graphene and carbon nanotube composite electrodes for supercapacitors with ultra-high energy density. Phys Chem Chem Phys 13:17615–17624
Deepi A, Srikesh G, Nesaraj AS (2018) Electrochemical performance of Bi2O3 decorated graphene nano composites for supercapacitor applications. Nano-Structures & Nano-Objects 15:10–16
Ganesh T, Ham D, Chang J, Cai G, Kil BH, Min SK, Mane RS, Han SH, Ganesh T, Ham D, Chang J et al (2011) PH dependent morphological evolution of beta-Bi2O3/PANI composite for supercapacitor applications. J Nanosci Nanotechnol 11:589–592
Genc R, Alas MO, Harputlu E, Repp S, Kremer N, Castellano M, Colak SG, Ocakoglu K, Erdem E (2017) High-capacitance hybrid supercapacitor based on multi-colored fluorescent carbon-dots. Sci Rep 7:11222–11235
Gopalakrishnan M, Srikesh G, Mohan A, Arivazhagan V (2017) In-situ, synthesis of Co3O4/graphite nanocomposite for high-performance supercapacitor electrode applications. Appl Surf Sci 403:578–583
Gujar TP, Shinde VR, Lokhande CD, Han SH (2006) Electrosynthesis of Bi2O3 thin films and their use in electrochemical supercapacitors. J Power Sources 161:1479–1485
He D, Wu X, Chen Y, Situ Y, Zhong L, Huang H (2018) In-situ growth of lepidocrocite on Bi2O3 rod: a perfect cycle coupling photocatalysis and heterogeneous Fenton-like process by potential-level matching with advanced oxidation. Chemosphere 210:334–340
Hong S, Cao S, Xia N, Huang X, Jing Y, Liang Q, Yuan D (2014) Controllable growth of Bi2O3 with rod-like structures via the surfactants and its electrochemical properties. J Appl Electrochem 44:735–740
Huang X, Yan J, Zeng F, Yuan X, Zou W, Yuan D (2013) Facile preparation of orange-like Bi2O2.33 microspheres for high performance supercapacitor application. Mater Lett 90:90–92
Li J, Chen D, Zhang Q, Zhang Y, Wang X, Yang C, Wu Q (2018) synthesis of sponge-like Bi2O3 via a soft/hard-combined biomembrane support system for supercapacitor application. Eur J Inorg Chem 2017a:1688–1692
Li J, Liu W, Xiao D, Wang X (2017a) Oxygen-rich hierarchical porous carbon made from pomelo peel fiber as electrode material for supercapacitor. Appl Surf Sci 416:918–924
Li J, Wu Q, Zan G (2016) A high-performance supercapacitor with well-dispersed Bi2O3 nanospheres and active-carbon electrodes. Eur J Inorg Chem 2015:5751–5756
Li T, Yu H, Zhi L, Zhang W, Dang L, Liu Z, Lei Z (2017b) Facile electrochemical fabrication of porous Fe2O3 nanosheets for flexible asymmetric supercapacitors. J Phys Chem C 121:18982–18991
Liao Y, Huang Y, Shu D, Zhong Y, Hao J, He C, Zhong J, Song X (2016) Three-dimensional nitrogen-doped graphene hydrogels prepared via hydrothermal synthesis as high-performance supercapacitor materials. Electrochim Acta 194:136–142
Mai LQ, Minhaskhan A, Tian X, Hercule KM, Zhao YL, Lin X, Xu X (2013) Synergistic interaction between redox-active electrolyte and binder-free functionalized carbon for ultrahigh supercapacitor performance. Nat Commun 4:2923–2930
Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon J (2010) Nano-sized transition-metal oxides as negative-electrode materials forlithium-ion batteries. Nature 47:32–40
Qiu Y, Yang M, Fan H, Zuo Y, Shao Y, Xu Y, Yang X, Yang S (2011) Anowires of alpha- and beta-Bi(2)O(3): phase-selective synthesis and application in photocatalysis. Parasite Vector 6:1–11
Qu Y, Zan G, Wang J, Wu Q (2016) Preparation of eggplant-derived macroporous carbon tubes and composites of EDMCT/Co (OH)(CO3)0.5 nano-cone-arrays for high-performance supercapacitors. J Mater Chem A 4:4296–4304
Ramirez-Castro C, Crosnier O, Athouel L, Retoux R, Belanger D, Brousse T (2018) Electrochemical performance of carbon/MnO2 nanocomposites prepared via molecular bridging as supercapacitor electrode materials. J Electrochem Soc 162:A5179–A5184
Repp S, Harputlu E, Gurgen S, Castellano M, Kremer N, Pompe N, Wörner J, Hoffmann A, Thomann R, Emen FM (2018) Synergetic effects of Fe3+ doped spinel Li4Ti5O12 nanoparticles on reduced graphene oxide for high surface electrode hybrid supercapacitors. Nanoscale 10:1877–1884
Shinde NM, Xia QX, Yun JM, Mane RS, Kim KH (2018) Polycrystalline and mesoporous 3-D Bi2O3 nanostructured negatrodes for high-energy and power-asymmetric supercapacitors: superfast room-temperature direct wet chemical growth. ACS Appl Mater Interfaces 10:11037–11047
Su PG, Yang LY (2016) NH3 gas sensor based on Pd/SnO2/RGO ternary composite operated at room-temperature. Sensor Actuat B-Chem 223:202–208
Sumboja A, Liu J, Zheng WG, Zong Y, Zhang H, Liu Z (2018) Electrochemical energy storage devices for wearable technology: a rationale for materials selection and cell design. Chem Soc Rev 47:5919–5945
Sun J, Li Z, Wang J, Hong W, Gong P, Wen P, Wang Z, Yang S (2015) Ni/Bi battery based on Ni (OH)2 nanoparticles/graphene sheets and Bi2O3 rods/graphene sheets with high performance. J Alloys Compd 643:231–238
Tammanoon N, Wisitsoraat A, Sriprachuabwong C, Phokharatkul D, Tuantranont A, Phanichphant S, Liewhiran C (2015) Ultrasensitive NO2 sensor based on ohmic metal-semiconductor interfaces of electrolytically exfoliated graphene/flame-spray-made SnO2 nanoparticles composite operating at low temperatures. ACS Appl Mater Interfaces 7:24338–24352
Wang SX, Jin CC, Qian WJ (2014) Bi2O3 with activated carbon composite as a supercapacitor electrode. J Alloys Compd 615:12–17
Wang YG, Xia YY (2006) Hybrid aqueous energy storage cells using activated carbon and lithium-intercalated compounds: I. The CLiMn2O4 system batteries, fuel cells, and energy conversion. J Electrochem Soc 153:A1425–A1431
Wu X, Wang Q, Zhang W, Wang Y, Chen W (2016) Nano nickel oxide coated graphene/polyaniline composite film with high electrochemical performance for flexible supercapacitor. Electrochim Acta 211:1066–1075
Xia N, Yuan D, Zhou T, Chen J, Mo S, Liu Y (2011) Microwave synthesis and electrochemical characterization of mesoporous carbon@Bi2O3 composites. Mater Res Bull 46:687–691
Xu W, Jiang Z, Yang Q, Huo W, Javed MS, Li Y, Huang L, Gu X, Hu C (2018) Approaching the lithium-manganese oxides’ energy storage limit with Li2MnO3 nanorods for high-performance supercapacitor. Nano Energy 43:168–176
Zheng FL, Li GR, Ou YN, Wang ZL, Su CY, Tong YX (2010) Synthesis of hierarchical rippled Bi(2)O(3) nanobelts for supercapacitor applications. Chem Commun 46:5021–5023