Tổng hợp dễ dàng β-SnWO4 nano tinh thể: như một chất xúc tác quang, cảm biến sinh học và anode cho pin Li-ion

N. S. Pavithra1, Shivaraj B. Patil1, S. R. Kiran Kumar2, Fahad A. Alharthi3, G. Nagaraju1
1Department of Chemistry, Siddaganga Institute of Technology (Affiliated to Visvesvaraya Technological University-Belagavi), Tumakuru, India
2Department of Chemistry, K S Institute of Technology, Bengaluru, India
3Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia

Tóm tắt

Trong nghiên cứu này, chúng tôi đã thành công trong việc tổng hợp β-SnWO4 nano tinh thể thông qua phương pháp kết tủa đồng thời đơn giản và chi phí thấp. Mẫu XRD xác nhận cấu trúc lập phương wolframite của β-SnWO4 nano tinh thể thuộc nhóm không gian P213 hoặc T4 với kích thước tinh thể trung bình khoảng 38 nm. Phổ FTIR của β-SnWO4 nano tinh thể cho thấy các băng tần ở khoảng 620–825 cm−1 được gán cho các chế độ dao động kéo dài và uốn cong đặc trưng của WO 6 6 , liên kết W–W và dao động kéo dài của các liên kết W–O–W trong β-SnWO4. Phổ UV-DRS cho thấy băng tần hấp thụ mạnh tại 604 nm và khoảng cách băng được ước tính của β-SnWO4 nano tinh thể là 1.9 eV. β-SnWO4 cho thấy hoạt tính xúc tác quang tuyệt vời đối với phẩm nhuộm indigo carmine dưới các điều kiện khác nhau của β-SnWO4 nano tinh thể. Ngoài ra, hiệu suất cảm biến điện hóa đối với việc định lượng dopamine ở nồng độ nanomolar và vật liệu anode cho pin Li-ion được khám phá, cho thấy khả năng xả và nạp lại lớn.

Từ khóa

#β-SnWO4 #nano tinh thể #chất xúc tác quang #cảm biến sinh học #pin Li-ion

Tài liệu tham khảo

Lv H, Liu Y, Hu J, Li Z, Lu Y (2014) Ionic liquid-assisted hydrothermal synthesis of Bi2WO6: reduced graphene oxide composites with enhanced photocatalytic activity. RSC Adv 4:63238–63245 Majhi D, Samal PK, Das K, Gouda SK, Bhoi YP, Mishra BG (2018) α-NiS/Bi2O3 nanocomposites for enhanced photocatalytic degradation of tramadol. ACS Appl Nano Mater 2:395–407 Majhi D, Bhoi YP, Samal PK, Mishra BG (2018) Morphology controlled synthesis and photocatalytic study of novel CuS-Bi2O2CO3 heterojunction system for chlorpyrifos degradation under visible light illumination. Appl Surf Sci 455:891–902 Bhoi YP, Nayak AK, Gouda SK, Mishra BG (2018) Photocatalytic mineralization of carbendazim pesticide by a visible light active novel type-II Bi2S3/BiFeO3 heterojunction photocatalyst. Catal Commun 114:114–119 Das K, Majhi D, Bhoi YP, Mishra BG (2019) Combustion synthesis, characterization and photocatalytic application of CuS/Bi4Ti3O12 pn heterojunction materials towards efficient degradation of 2-methyl-4-chlorophenoxyacetic acid herbicide under visible light. Chem Eng J 362:588–599 Bhoi YP, Behera C, Majhi D, Equeenuddin SM, Mishra BG (2018) Visible light-assisted photocatalytic mineralization of diuron pesticide using novel type II CuS/Bi2W2O9 heterojunctions with a hierarchical microspherical structure. New J Chem 42:281–292 Pavithra NS, Lingaraju K, Raghu GK, Nagaraju G (2017) Citrus maxima (Pomelo) juice mediated eco-friendly synthesis of ZnO nanoparticles: applications to photocatalytic, electrochemical sensor and antibacterial activities. Spectrochim Acta Part A Mol Biomol Spectrosc 185:11–19 Nagaveni K, Sivalingam G, Hegde MS, Madras G (2004) Photocatalytic degradation of organic compounds over combustion-synthesized nano-TiO2. Environ Sci Technol 38:1600–1604 Ajmal A, Majeed I, Malik RN, Idriss H, Nadeem MA (2014) Principles and mechanisms of photocatalytic dye degradation on TiO2 based photocatalysts: a comparative overview. RSC Adv 4:37003–37026 Çeken B, Kandaz M, Koca A (2012) Electrochemical metal-ion sensor based on a cobalt phthalocyanine complex captured in Nafion® on a glassy carbon electrode. J Coord Chem 65:3383–3394 Hayat A, Catanante G, Marty J (2014) Current trends in nanomaterial-based amperometric biosensors. Sensors 14:23439–23461 Muralikrishna S, Kishore B, Nagabhushana H, Suresh D, Sharma SC, Nagaraju G (2017) One pot green synthesis of MnCO3–rGO composite hybrid superstructure: application to lithium ion battery and biosensor. New J Chem 41:12854–12865 Tian H, Xin F, Wang X, He W, Han W (2015) High capacity group-IV elements (Si, Ge, Sn) based anodes for lithium-ion batteries. J Materiomics 1:153–169 Hong YJ, Son MY, Kang YC (2013) Batteries: one-pot facile synthesis of double-shelled SnO2 yolk-shell-structured powders by continuous process as anode materials for Li-ion batteries. Adv Mater 25:2250 Ghannoum A, Iyer K, Nieva P, Khajepour A (2016) Fiber optic monitoring of lithium-ion batteries: a novel tool to understand the lithiation of batteries. In: IEEE sensors, pp 1–3 Ede SR, Kundu S (2015) Microwave synthesis of SnWO4 nanoassemblies on DNA scaffold: a novel material for high performance supercapacitor and as catalyst for butanol oxidation. ACS Sustain Chem Eng 3:2321–2336 Li Z, Zhang Y, Xiang H, Ma X, Yuan Q, Wang Q, Chen C (2013) Trimethyl phosphite as an electrolyte additive for high-voltage lithium-ion batteries using lithium-rich layered oxide cathode. J Power Sources 240:471–475 Chen Y-C, Lin Y-G, Hsu L-C, Tarasov A, Chen P-T, Hayashi M, Ungelenk J, Hsu Y-K, Feldmann C (2016) β-SnWO4 photocatalyst with controlled morphological transition of cubes to spikecubes. ACS Catalysis 6:2357–2367 Ungelenk J, Feldmann C (2012) Synthesis of faceted β-SnWO4 microcrystals with enhanced visible-light photocatalytic properties. Chem Commun 48:7838–7840 Chandran HT, Thangavel S, Jipsa C, Venugopal G (2014) Study on inorganic oxidants assisted sonocatalytic degradation of Resazurin dye in presence of β-SnWO4 nanoparticles. Mater Sci Semicond Process 27:212–219 Raj AT, Thangavel S, Rose A, Jipsa C, Jose M, Nallamuthu G, Kim S-J (2016) Venugopal, Influence of Morphology and Common Oxidants on the Photocatalytic Property of β-SnWO4 Nanoparticles. J Nanosci Nanotechnol 16:2541–2547 Huang L, Yao B, Sun J, Gao X, Wu J, Wan J, Li T, Hu Z, Zhou J (2017) Highly conductive and flexible molybdenum oxide nanopaper for high volumetric supercapacitor electrode. J Mater Chem A 5:2897–2903 Dan M, Cheng M, Gao H, Zheng H, Feng C (2014) Synthesis and electrochemical properties of SnWO4. J Nanosci Nanotechnol 14:2395–2399 Bakshi MS (2015) How surfactants control crystal growth of nanomaterials. Cryst Growth Des 16:1104–1133 Kuzmin A, Anspoks A, Kalinko A, Timoshenko J, Kalendarev R, Nataf L, Baudelet F, Irifune T, Roy P (2016) Pressure-induced insulator-to-metal transition in α-SnWO4. J Phys Conf Ser 712:12122–12125 Goriparti S, Miele E, De Angelis F, Di Fabrizio E, Zaccaria RP, Capiglia C (2014) Review on recent progress of nanostructured anode materials for Li-ion batteries. J Power Sources 257:421–443 Smeets A, Evrard C, Landtmeters M, Marchand C, Knoops B, Declercq JP (2005) Crystal structures of oxidized and reduced forms of human mitochondrial thioredoxin 2. Protein Sci 14:2610–2621 Stoltzfus MW, Woodward PM, Seshadri R, Klepeis JH, Bursten B (2007) Structure and bonding in SnWO4, PbWO4, and BiVO4: lone pairs vs inert pairs. Inorg Chem 46:3839–3850 Wojcik J, Calvayrac F, Goutenoire F, Mhadhbi N, Corbel G, Lacorre P, Bulou A (2013) Lattice dynamics of β-SnWO4: experimental and Ab Initio Calculations. J Phys Chem C 117:5301–5313 Garadkar KM, Ghule LA, Sapnar KB, Dhole SD (2013) A facile synthesis of ZnWO4 nanoparticles by microwave assisted technique and its application in photocatalysis. Mater Res Bull 48:1105–1109 Patil SB, Ravishankar TN, Lingaraju K, Raghu GK, Nagaraju G (2018) Multiple applications of combustion derived nickel oxide nanoparticles. J Mater Sci Mater Electron 29:277–287 Patil SB, Kishore B, Manjunath K, Reddy V, Nagaraju G (2018) One step hydrothermal synthesis of novel Cu2S-MoO3 nanocomposite for lithium ion battery and photocatalytic applications. Int J Hydrogen Energy 43:4003–4014 Zhu G, Que W, Zhang J, Zhong P (2011) Photocatalytic activity of SnWO4 and SnW3O9 nanostructures prepared by a surfactant-assisted hydrothermal process. Mater Sci Eng, B 176:1448–1455 Gadhi TA, Hernández-Gordillo A, Bizarro M, Jagdale P, Tagliaferro A, Rodil SE (2016) Efficient α/β-Bi2O3 composite for the sequential photodegradation of two-dyes mixture. Ceram Int 42:13065–13073 Gao B, Fan H, Zhang X, Song L (2012) Template-free hydrothermal synthesis and high photocatalytic activity of ZnWO4 nanorods. Mater Sci Eng B 177:1126–1132 Liu X, Liang B, Zhang M, Long Y, Li W (2017) Enhanced photocatalytic properties of α-SnWO4 nanosheets modified by Ag nanoparticles. J Colloid Interface Sci 490:46–52 Yadav LR, Manjunath K, Archana B, Madhu C, Naika HR, Nagabhushana H, Kavitha C, Nagaraju G (2016) Fruit juice extract mediated synthesis of CeO2 nanoparticles for antibacterial and photocatalytic activities. Eur Phys J Plus 131:154 Zhu Z, Tian H, Zhang M, Liang B, Li W (2016) Preparation of α-SnWO4 hierarchical spheres by Bi3+-doping and their enhanced photocatalytic activity under visible light. Ceram Int 42:14743–14748 Wang QL, Li HB, Jiang HY, Ding ST, Song ZW, Shi JS (2015) Effect of solvent on α-SnWO4 photocatalyst for degradation of methyl orange under visible light irradiation. Mater Technol 30:288–293 Kumar SK, Mamatha GP, Muralidhara HB, Anantha MS, Yallappa S, Hungund BS, Kumar KY (2017) Highly efficient multipurpose graphene oxide embedded with copper oxide nanohybrid for electrochemical sensors and biomedical applications. J Sci Adv Mater Dev 2:493–500 Manjunatha AS, Pavithra NS, Marappa S, Prashanth SA, Nagaraju G (2018) Green synthesis of flower-like BiVO4 nanoparticles by solution combustion method using lemon (Citrus Limon) juice as a fuel: photocatalytic and electrochemical study. ChemistrySelect 3:13456–13463 Huang R, Ge H, Lin X, Guo Y, Yuan R, Fu X, Li Z (2013) Facile one-pot preparation of α-SnWO 4/reduced graphene oxide (RGO) nanocomposite with improved visible light photocatalytic activity and anode performance for Li-ion batteries. RSC Advances 3:1235–1242 Pavithra NS, Nagaraju G, Viswanatha R (2018) Surfactant assisted sonochemical synthesis of zinc tungstate nanoparticles: anode for Li-ion battery and photocatalytic activities. The European Physical Journal Plus 133:498