Facile synthesis of efficient visible active C-doped TiO2 nanomaterials with high surface area for the simultaneous removal of phenol and Cr(VI)

Materials Research Bulletin - Tập 61 - Trang 391-399 - 2015
A. Daya Mani1, P. Manoj Kumar Reddy1, Srinivaas Masimukku1, Partha Ghosal2, N. Xanthopoulos3, Ch. Subrahmanyam1
1Department of Chemistry, IIT Hyderabad, Yeddumailaram 502 205, India
2Defence Metallurgical Research Laboratory, Kanchanbagh, Hyderabad 500 058, India
3Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland

Tóm tắt

Từ khóa


Tài liệu tham khảo

Aragay, 2012, Nanomaterials for sensing and destroying pesticides, Chem. Rev., 112, 5317, 10.1021/cr300020c

Kim, 2011, Heterogeneous catalytic wet air oxidation of refractory organic pollutants in industrial wastewaters: a review, J. Haz. Mater., 186, 16, 10.1016/j.jhazmat.2010.11.011

Fu, 2011, Removal of heavy metal ions from wastewaters: a review, J. Environ. Manage., 92, 407, 10.1016/j.jenvman.2010.11.011

Chiou, 2007, Photocatalytic degradation of phenol in aqueous solutions by Pr doped TiO2 nanoparticles, J. Hazar. Mater., 149, 1, 10.1016/j.jhazmat.2007.03.035

Kujawski, 2004, Removal of phenol from wastewater by different separation techniques, Desalination, 163, 287, 10.1016/S0011-9164(04)90202-0

Fernandez, 2007, Bisphenol-A and chlorinated derivatives in adipose tissue of women, Reprod. Toxicol., 24, 259, 10.1016/j.reprotox.2007.06.007

Wang, 2009, Synthesis of phenol–formaldehyde resol resins using organosolv pine lignins, Eur. Polym. J., 45, 3380, 10.1016/j.eurpolymj.2009.10.003

Fabbri, 2006, Effect of surfactant micro structures on photocatalytic degradation of phenol and chlorophenols, Appl. Catal. B- Environ., 62, 21, 10.1016/j.apcatb.2005.06.011

Chiou, 2007, Photocatalytic degradation of phenol in aqueous solutions by Pr-doped TiO2 nanoparticles, J. Haz. Mater., 149, 1, 10.1016/j.jhazmat.2007.03.035

Hoffmann, 1995, Environmental applications of semiconductor photocatalysis, Chem. Rev., 95, 69, 10.1021/cr00033a004

Fox, 1995, Heterogeneous photocatalysis, Chem. Rev., 83, 341

Chen, 2007, Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications, Chem. Rev., 107, 2891, 10.1021/cr0500535

Liu, 2010, Titania-based photocatalysts-crystal growth, doping and hetero-structuring, J. Mater. Chem., 20, 831, 10.1039/B909930A

Dong, 2011, Enhancement of the visible light photocatalytic activity of C-doped TiO2 nanomaterials prepared by a green synthetic approach, J. Phys. Chem. C., 115, 13285, 10.1021/jp111916q

Xiao, 2009, Photocatalytic activity and hydroxyl radical formation of carbon-doped TiO2 nanocrystalline: effect of calcination temperature, Chem. Eng. J., 148, 248, 10.1016/j.cej.2008.08.024

Wang, 2006, Second-generation photocatalytic materials: anion-doped TiO2, J. Phys. Condens. Mater., 18, 421, 10.1088/0953-8984/18/2/006

Park, 2009, Carbon-doped TiO2 photocatalyst synthesized without using an external carbon precursor and the visible light activity, Appl. Catal. B: Environ., 91, 355, 10.1016/j.apcatb.2009.06.001

Ahmmad, 2010, One-step and large scale synthesis of non-metal doped TiO2 submicrospheres and their photocatalytic activity, Adv. Powder Technol., 21, 292, 10.1016/j.apt.2009.12.009

Mattle, 2013, Photocatalytic degradation of Remazol Brilliant Blue® by sol–gel derived carbon-doped TiO2, Appl. Catal. B: Environ, 140–141, 348, 10.1016/j.apcatb.2013.04.020

Lim, 2010, Synthesis of carbon-doped photocatalytic TiO2 nano-powders by AFD process, J. Ind. Eng. Chem., 16, 723, 10.1016/j.jiec.2010.07.012

Yu, 2014, Carbon-doped TiO2 nanoparticles wrapped with nanographene as a high performance photocatalyst for phenol degradation under visible light irradiation, Appl. Catal. B: Environ., 144, 893, 10.1016/j.apcatb.2013.08.030

Lin, 2013, Effect of C content and calcination temperature on the photocatalytic activity of C-doped TiO2 catalyst, Sep. Purif. Technol., 116, 114, 10.1016/j.seppur.2013.05.018

Zhang, 2013, Facile fabrication and characterization of multi-type carbon-doped TiO2 for visible light-activated photocatalytic mineralization of gaseous toluene, J. Mater. Chem. A, 1, 4497, 10.1039/c3ta01366a

Wu, 2007, Synthesis and characterization of carbon-doped Tio2 nanostructures with enhanced visible light response, Chem. Mater., 19, 4530, 10.1021/cm071244m

Rajeshwar, 2009, Solution combustion synthesis of oxide semiconductors for solar energy conversion and environmental remediation, Chem. Soc. Rev., 38, 1984, 10.1039/b811238j

Hegde, 2009, Noble metal ionic catalysts, Acc. Chem. Res., 42, 704, 10.1021/ar800209s

Patil, 2002, Combustion synthesis: an update, Curr. Opin. Solid State Mater. Sci., 6, 507, 10.1016/S1359-0286(02)00123-7

Mani, 2012, Combustion synthesized TiO2 for enhanced photocatalytic activity under the direct sunlight-optimization of titanylnitrate synthesis, Mater. Res. Bull., 47, 2415, 10.1016/j.materresbull.2012.05.047

Patil, 1993, Combustion synthesis and properties, Bull. Mater. Sci., 16, 533, 10.1007/BF02757654

Jain, 1981, A new approach to thermochemical calculations of condensed fuel-oxidizer mixtures, Combust. Flame., 40, 71, 10.1016/0010-2180(81)90111-5

Mani, 2013, Effect of fuels on combustion synthesis of TiO2 – towards efficient photocatalysts for methylene blue oxidation and Cr(VI) reduction under natural sunlight, Chem. Eng. J., 228, 545, 10.1016/j.cej.2013.05.025

Naik, 2010, Facile synthesis of N- and S-incorporated nanocrystalline TiO2 and direct solar-light-driven photocatalytic activity, J. Phys. Chem. C., 114, 19473, 10.1021/jp1083345

Clesceri, 1995

Stover, 1928, Diphenyl carbazide as a test for chromium, J. Am. Chem. Soc., 50, 2363, 10.1021/ja01396a007

Ren, 2007, Low temperature preparation and visible light photo catalytic activity of mesoporous carbon-doped crystalline TiO2, Appl Catal. B- Environ., 69, 138, 10.1016/j.apcatb.2006.06.015

Nagaveni, 2004, Synthesis and Structure of Nanocrystalline TiO2 with lower band gap showing high photocatalytic activity, Langmuir., 20, 2900, 10.1021/la035777v

Sakthivel, 2003, Daylight photocatalysis by carbon-modified titanium dioxide, Angew. Chem. Int. Ed., 42, 4908, 10.1002/anie.200351577

Li, 2005, Synthesis and characterization of carbon-doped titania as an artificial solar light sensitive photocatalyst, Chem. Phys. Lett., 404, 25, 10.1016/j.cplett.2005.01.062

Papirer, 1995, XPS study of the halogenation of carbon black – Part 2, Chlorination, Carbon, 33, 63

Fu, 2002, XPS Study of copper-doped carbon Aerogels, Langmuir, 18, 10100, 10.1021/la020556v

Li, 2011, Solution combustion synthesis and visible light-induced photocatalytic activity of mixed amorphous and crystalline MgAl2O4 nanopowders, Chem. Eng. J., 173, 750, 10.1016/j.cej.2011.08.043

Bekkouche, 2004, Study of adsorption of phenol on titanium oxide (TiO2), Desalination, 166, 355, 10.1016/j.desal.2004.06.090

Gogate, 2004, A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions, Adv. Environ. Res., 8, 501, 10.1016/S1093-0191(03)00032-7

Zhu, 2011, Study on visible light photocatalytic activity and mechanism of spherical Bi12TiO20 nanoparticles prepared by low-power hydrothermal method, Appl. Catal. B: Environ., 102, 316, 10.1016/j.apcatb.2010.12.019

Kusic, 2006, Photo-assisted Fenton type processes for the degradation of phenol: a kinetic study, J. Hazard. Mater. B, 136, 632, 10.1016/j.jhazmat.2005.12.046

Liu, 2009, Simultaneous oxidation of phenol and reduction of Cr(VI) induced by contact glow discharge electrolysis, J. Haz. Mater., 168, 992, 10.1016/j.jhazmat.2009.02.116

Neta, 1996, Rate constants for reactions of aliphatic carbon-centered radicals in aqueous solution, J. Phys. Chem. Ref. Data., 25, 709, 10.1063/1.555978

Narita, 1982, On the mechanism of oxidation of hydroxy cyclohexadienyl radicals with molecular oxygen, J. Am. Chem. Soc., 104, 7316, 10.1021/ja00389a071

Walling, 1998, Intermediates in the reactions of Fenton type reagents, Acc. Chem. Res., 31, 155, 10.1021/ar9700567

Buxton, 1986, Aromatic hydroxylation. 8. A radiation chemical study of the oxidation of hydroxycyclohexadienyl radicals, J. Phys. Chem., 90, 6309, 10.1021/j100281a050

Pikaev, 1997, Removal of heavy metals from water by electron-beam treatment in the presence of an hydroxyl radical scavenger, Mendeleev Commun., 7, 52, 10.1070/MC1997v007n02ABEH000716

Eberhardt, 1975, Radiation-induced homolytic aromatic substitution. IV. Effect of metal ions on the hydroxylation of nitrobenzene, J. Phys. Chem., 79, 1913, 10.1021/j100585a005

Hickling, 1964, Contact glow-discharge electrolysis, Trans. Faraday Soc., 60, 783, 10.1039/tf9646000783

A.I-Sheikhly, 1991, The mechanisms of the reduction reactions of Cr(VI) in the radiolysis of acidic potassium and silver dichromate solutions in the presence or absence of acetic acid, Int. J. Radiat. Appl. Instrum. C, 38, 203