Facile synthesis of CuZrO3@PPY nanohybrid balls embedded 3-dimensional network with synergistic effect for efficient oxygen evolution reaction

Surfaces and Interfaces - Tập 36 - Trang 102607 - 2023
Salma Aman1, Soumaya Gouadria2, Sumaira Manzoor3, Muhammad Abdullah4, Rabia Yasmin Khosa5, Muhammad Naeem Ashiq3, Mohd Zahid Ansari6, Akram Alfantazi7
1Institute of Physics, Khwaja Fareed University of Engineering and Information Technology, Abu Dhabi Road, Rahim Yar Khan-64200, Pakistan
2Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, P.O.Box 84428, Riyadh 11671, Saudi Arabia
3Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
4Department of Chemistry, Government College University Lahore, Katchery Road, Anarkali, Lahore, Punjab, 54000, Pakistan
5University of Education, Lahore, Dera Ghazi Khan Campus, D. G. Khan 32200, Pakistan
6School of Materials Science and Engineering, Yeungnam University, Gyeongsan 712749, South Korea
7Chemical Engineering Department, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates

Tài liệu tham khảo

Y. Lattach, J.F. Rivera, T. Bamine, A. Deronzier, J.-C.J.A.a.m. Moutet, interfaces, Iridium oxide–polymer nanocomposite electrode materials for water oxidation, 6 (2014) 12852-12859. J.D. Blakemore, N.D. Schley, D. Balcells, J.F. Hull, G.W. Olack, C.D. Incarvito, O. Eisenstein, G.W. Brudvig, R.H.J.J.o.t.A.C.S. Crabtree, Half-sandwich iridium complexes for homogeneous water-oxidation catalysis, 132 (2010) 16017-16029. R. Brimblecombe, G.F. Swiegers, G.C. Dismukes, L.J.A.C. Spiccia, Sustained water oxidation photocatalysis by a bioinspired manganese cluster, 120 (2008) 7445-7448. R. Subbaraman, D. Tripkovic, K.-C. Chang, D. Strmcnik, A.P. Paulikas, P. Hirunsit, M. Chan, J. Greeley, V. Stamenkovic, N.M.J.N.m. Markovic, Trends in activity for the water electrolyser reactions on 3 d M (Ni, Co, Fe, Mn) hydr (oxy) oxide catalysts, 11 (2012) 550-557. J. Hu, S. Zheng, X. Zhao, X. Yao, Z.J.J.o.M.C.A. Chen, A theoretical study on the surface and interfacial properties of Ni 3 P for the hydrogen evolution reaction, 6 (2018) 7827-7834. J.J. Concepcion, J.W. Jurss, J.L. Templeton, T.J.J.P.o.t.N.A.o.S. Meyer, Mediator-assisted water oxidation by the ruthenium “blue dimer” cis, cis-[(bpy) 2 (H2O) RuORu (OH2)(bpy) 2] 4+, 105 (2008) 17632-17635. M.W. Kanan, D.G.J.S. Nocera, In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+, 321 (2008) 1072-1075. P.W. Menezes, A. Indra, C. Das, C. Walter, C. Göbel, V. Gutkin, D. Schmeiβer, M.J.A.C. Driess, Uncovering the nature of active species of nickel phosphide catalysts in high-performance electrochemical overall water splitting, 7 (2017) 103-109. Q. Yin, J.M. Tan, C. Besson, Y.V. Geletii, D.G. Musaev, A.E. Kuznetsov, Z. Luo, K.I. Hardcastle, C.L.J.S. Hill, A fast soluble carbon-free molecular water oxidation catalyst based on abundant metals, 328 (2010) 342-345. Y.J.P.i.n.s.m.i. Cheng, Advances in electrocatalysts for oxygen evolution reaction of water electrolysis-from metal oxides to carbon nanotubes, 25 (2015) 545-553. Z.P. Wu, X.F. Lu, S.Q. Zang, X.W.J.A.F.M. Lou, Non-noble-metal-based electrocatalysts toward the oxygen evolution reaction, 30 (2020) 1910274. Q. Shi, C. Zhu, D. Du, Y.J.C.S.R. Lin, Robust noble metal-based electrocatalysts for oxygen evolution reaction, 48 (2019) 3181-3192. A. Mendoza-Garcia, H. Zhu, Y. Yu, Q. Li, L. Zhou, D. Su, M.J. Kramer, S.J.A.C. Sun, Controlled Anisotropic Growth of Co-Fe-P from Co-Fe-O Nanoparticles, 127 (2015) 9778-9781. Y. Li, H. Zhang, M. Jiang, Y. Kuang, X. Sun, X.J.N.R. Duan, Ternary NiCoP nanosheet arrays: An excellent bifunctional catalyst for alkaline overall water splitting, 9 (2016) 2251-2259. X. Jia, S. Gao, T. Liu, D. Li, P. Tang, Y.J.E.A. Feng, Fabrication and bifunctional electrocatalytic performance of ternary CoNiMn layered double hydroxides/polypyrrole/reduced graphene oxide composite for oxygen reduction and evolution reactions, 245 (2017) 59-68. W.J. Youngblood, S.-H.A. Lee, Y. Kobayashi, E.A. Hernandez-Pagan, P.G. Hoertz, T.A. Moore, A.L. Moore, D. Gust, T.E.J.J.o.t.A.C.S. Mallouk, Photoassisted overall water splitting in a visible light-absorbing dye-sensitized photoelectrochemical cell, 131 (2009) 926-927. T. Nakagawa, N.S. Bjorge, R.W.J.J.o.t.A.C.S. Murray, Electrogenerated IrO x nanoparticles as dissolved redox catalysts for water oxidation, 131 (2009) 15578-15579. J.D. Blakemore, N.D. Schley, M.N. Kushner-Lenhoff, A.M. Winter, F. D'Souza, R.H. Crabtree, G.W.J.I.C. Brudvig, Comparison of amorphous iridium water-oxidation electrocatalysts prepared from soluble precursors, 51 (2012) 7749-7763. A.J. Esswein, M.J. McMurdo, P.N. Ross, A.T. Bell, T.D.J.T.J.o.P.C.C. Tilley, Size-dependent activity of Co3O4 nanoparticle anodes for alkaline water electrolysis, 113 (2009) 15068-15072. Huang, 2019, Nitrogen treatment generates tunable nanohybridization of Ni5P4 nanosheets with nickel hydr (oxy) oxides for efficient hydrogen production in alkaline, seawater and acidic media, Appl. Catal., B, 251, 181, 10.1016/j.apcatb.2019.03.037 Wang, 2022, Charge Relays via Dual Carbon-Actions on Nanostructured BiVO4 for High Performance Photoelectrochemical Water Splitting, Adv. Funct. Mater., 32 Wang, 2022, Oxygen vacancy–based metal oxides photoanodes in photoelectrochemical water splitting, Mater. Today Sustainability, 18 Xiong, 2022, Unveiling the promotion of accelerated water dissociation kinetics on the hydrogen evolution catalysis of NiMoO4 nanorods, J. Energy Chem., 67, 805, 10.1016/j.jechem.2021.11.025 Xiong, 2022, In situ grown Co-based interstitial compounds: Non-3d metal and non-metal dual modulation boosts alkaline and acidic hydrogen electrocatalysis, Small, 18, 10.1002/smll.202105331 Ju, 2021, Conductive Polymer Intercalation Tunes Charge Transfer and Sorption–Desorption Properties of LDH Enabling Efficient Alkaline Water Oxidation, ACS Appl. Mater. Interfaces, 13, 37063, 10.1021/acsami.1c08429 Lin, 2018, Three-dimensional decoupling co-catalyst from a photoabsorbing semiconductor as a new strategy to boost photoelectrochemical water splitting, Nano Lett., 19, 455, 10.1021/acs.nanolett.8b04278 Alsabbagh, 2022, Transitioning to carbon neutrality in Bahrain: a policy brief, Arab. Gulf J. Sci. Res. C. Zhu, J. Zhai, D. Wen, S.J.J.o.M.C. Dong, Graphene oxide/polypyrrole nanocomposites: one-step electrochemical doping, coating and synergistic effect for energy storage, 22 (2012) 6300-6306. A. Liu, C. Li, H. Bai, G.J.T.J.o.P.C.C. Shi, Electrochemical deposition of polypyrrole/sulfonated graphene composite films, 114 (2010) 22783-22789. R. Bashyam, P.J.N. Zelenay, A class of non-precious metal composite catalysts for fuel cells, 443 (2006) 63-66. Nisa, 2022, CdSe supported SnO2 nanocomposite with strongly hydrophilic surface for enhanced overall water splitting, Fuel, 321, 10.1016/j.fuel.2022.124086 Krishnaswamy, 2019, Optical properties of P-type polypyrrole thin film synthesized by pulse laser deposition technique: Hole transport layer in electroluminescence devices, Optik, 194, 10.1016/j.ijleo.2019.163034 Alharbi, 2022, Visible light active SrZrO3/PbS nanocomposite for photoconversion of CO2 into methane and methanol, Appl. Phys. A, 128, 1, 10.1007/s00339-022-05383-6 Alharbi, 2022, Design and fabrication of novel MnCr2O4 nanostructure: electrochemically deposited on stainless steel strip with enhanced efficiency towards supercapacitor applications, J. Mater. Sci.: Mater. Electron., 33, 7256 Gouadria, 2022, Development of bifunctional Mo doped ZnAl2O4 spinel nanorods array directly grown on carbon fiber for supercapacitor and OER application, Ceram. Int. Zhao, 2021, PPy film anchored on ZnCo2O4 nanowires facilitating efficient bifunctional electrocatalysis, Mater. Today Energy, 20 N. Alwadai, S. Manzoor, S.R. Ejaz, R.Y. Khosa, S. Aman, M. Al-Buriahi, S. Alomairy, Z. Alrowaili, H. Somaily, M.J.J.o.M.S.M.i.E. Hayat, CoFe2O4 surface modification with conducting polypyrrole: employed as a highly active electrocatalyst for oxygen evolution reaction, 33 (2022) 13244-13254. D. Zhao, M. Dai, Y. Zhao, H. Liu, Y. Liu, X.J.N.E. Wu, Improving electrocatalytic activities of FeCo2O4@ FeCo2S4@ PPy electrodes by surface/interface regulation, 72 (2020) 104715. Q. Hu, Synthesis of transition metal compounds for efficient electrocatalytic water splitting, (2019). K. Brijesh, K. Bindu, D. Shanbhag, H.J.I.j.o.h.e. Nagaraja, Chemically prepared Polypyrrole/ZnWO4 nanocomposite electrodes for electrocatalytic water splitting, 44 (2019) 757-767. Chaluvaraju, 2018, Experimental studies on ac conductivity of the polypyrrole/ash (paddy husk) nano-composites, Materials Today: Proceedings, 5, 2496 J. Huang, Y. Sun, X. Du, Y. Zhang, C. Wu, C. Yan, Y. Yan, G. Zou, W. Wu, R.J.A.M. Lu, Cytomembrane-structure-inspired active Ni–N–O interface for enhanced oxygen evolution reaction, 30 (2018) 1803367.