Facile one-pot synthesis of water-soluble fcc FePt3 alloy nanostructures

Springer Science and Business Media LLC - Tập 2 - Trang 1-8 - 2020
Melek Kızaloğlu Akbulut1, Christina Harreiß2, Mario Löffler3,4, Karl J. J. Mayrhofer3,4, Michael Schöbitz5, Julien Bachmann5, Erdmann Spiecker2, Rainer Hock6, Carola Kryschi1
1Department of Chemistry and Pharmacy and ICMM, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
2Department of Materials Science and Engineering, Chair of Micro- and Nanostructure Research and Center for Nanoanalysis and Electron Microscopy, Interdisciplinary Center for Nanostructured Films, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
3Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Erlangen, Germany
4Department of Chemical and Biological Engineering, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
5Chair of Chemistry of Thin Film Materials, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
6Institute for Crystallography and Structural Physics, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany

Tóm tắt

Proccessible FePt3 alloy nanoparticles with sizes smaller than 50 nm open the avenue to novel magnetic sensor, catalytic and biomedical applications. Our research objective was to establish a highly scalable synthesis technique for production of single-crystalline FePt3 alloy nanoparticles. We have elaborated a one-pot thermal decomposition technique for the synthesis of superparamagnetic FePt3 nanoparticles (FePt3 NPs) with mean sizes of 10 nm. Subsequent tiron coating provided water solubility of the FePt3 NPs and further processibility as bidental ligands enable binding to catalyst surfaces, smart substrates or biosensors. The chemical composition, structure, morphology, magnetic, optical and crystallographic properties of the FePt3 NPs were examined using high resolution transmission electron microscopy, high-angle annular dark field-scanning transmission electron microscopy, scanning transmission electron microscopy-energy-dispersive X-ray spectroscopy mapping, Fourier transform infrared-attenuated total reflection, X-ray powder diffraction, X-ray photoelectron spectroscopy, vibrating sample magnetometry and UV–Vis absorption spectroscopy.

Tài liệu tham khảo

Angelomé PC, Soler-Illia GJDA (2005) Organically modified transition-metal oxide mesoporous thin films and xerogels. Chem Mater 17:322–331 Chen S, Andre P (2012) Colloidal syntheses of FePt nanoparticles. Int J Nanotechnol 9:39–68 Chen Y, Zhang H (2013) Complexation facilitated reduction of aromatic N-oxides by aqueous FeII–tiron com plex: reaction kinetics and mechanisms. Environ Sci Technol 47:11023–11031 Chou S-W, Yu-Hong Shau Y-H, Wu P-C, Yang Y-S, Shieh D-B, Chen C-C (2010) In vitro and in vivo studies of FePt nanoparticles for dualmodal CT/MRI molecular imaging. J Am Chem Soc 132:13271 De Berti IP, Cagnoli MV, Pecchi G, Alessandrini JL, Stewart SJ, Bengoa JF, Marchetti SG (2013) Alternative low-cost approach to the synthesis of magnetic iron oxide nanoparticles by thermal decomposition of organic precursors. Nanotechnology 24:175601 Fukuda K, Fujieda S, Shinoda K, Suzuki S, Jeyadevan B (2012) Low temperature synthesis of FePt alloy nano-particles by polyol process. J Phys: Conf Ser 352:012020 Gardner RR, Gerdes AL, Seeley JA (2013) Tiron-containing detergents having acceptable color, U.S. Patent No. 8, 399, 396. U.S. Patent and Trademark Office, Washington, DC Green LA, Thuy TT, Mott DM, Maenosono S, Thanh NTK (2014) Multicore magnetic FePt nanoparticles: controlled formation and properties. RSC Adv 4:1039–1044 Heitsch AT, Lee DC, Korgel BA (2010) Antiferromagnetic single domain L12 FePt3 nanocrystals. J Phys Chem C 114:2512–2518 Hori M, Pagnoux C, Baumard JF, Nogami M (2007) Preparation of gold nanoparticles (GNP) aqueous suspensions by a new method involving tiron. J Mater Sci 42:80–86 Hossain AA, Rahman ML (2011) Enhancement of microstructure and initial permeability due to Cu substitution in Ni0.50-xCuxZn0.50Fe2O4 ferrites. J Magn Magn Mater 323:1954–1962 Koch S, Ackermann G, Scholze V (1981) Untersuchungen zur Anwendung ternärer Komplexe in der Photometrie-II Die Bestimmung des Titanium (IV) mit Tiron in Gegenwart von Iminodiessigsäure, Nitrilotriessigsäure bzw. Diethylentriaminpentaessigsäure Talanta 28:915–918 Lee Y, Garcia MA, Frey Huls NA, Sun S (2010) Synthetic tuning of the catalytic properties of Au-FePt3 nano-particles. Angew Chem 122:1293–1296 Liu Y, Jiang Y, Zhang X, Wang Y, Zhang Y, Liu H, Zhai H, Liu Y, Yang J, Yan Y (2014) Structural and magnetic properties of the ordered FePt3, FePt and Fe3Pt nanoparticles. J Solid State Chem 209:69–73 Lutterotti L (2010) Total pattern fitting for the combined size-strain-stress-texture determination in thin film diffraction. Nucl Instrum Methods Phys Res B Beam Interact Mater At 268:334–340. https://doi.org/10.1016/j.nimb.2009.09.053 Lutterotti L, Matthies S, Wenk HR, Schultz AJ, Richardson J (1997) Combined texture and structure analysis of deformed limestone from neutron diffraction spectra. J Appl Phys 81:594–600 Lutterotti L, Chateigner D, Ferrari S, Ricote J (2004) Texture, residual stress and structural analysis of thin films using a combined X-ray analysis. Thin Solid Films 450:34–41 Lutterotti L, Bortolotti M, Ischia G, Lonardelli I, Wenk HR (2007) Rietveld texture analysis from diffraction images. Z Kristallogr Suppl 26:125–130 McIntyre NS, Zetaruk DG (1977) X-ray photoelectron spectroscopic studies of iron oxides. Anal Chem 49:1521–1529 Medwal R, Sehdev N, Annapoorni S (2012) Electronic states of self-stabilized L10 FePt alloy nanoparticles. Appl Phys A 109:403–408 Meng Z, Li G, Ng SM, Wong HF, Yiu SC, Ho CL, Leung CW, Wong WY (2016) Nanopatterned L10-FePt nanoparticles from single-source metallopolymer precursors for potential application in ferromagnetic bit-patterned media magnetic recording. Polym Chem 7:4467–4475 Mills P, Sullivan JL (1983) A study of the core level electrons in iron and its three oxides by means of X-ray photoelectron spectroscopy. J Phys D Appl Phys 16:723 Nguyen HL, Howard LEM, Stinton GW, Giblin SR, Tanner BK, Terry I, Hughes AK, Ross IM, Serres A, Evans JSO (2006) Synthesis of size-controlled fcc and fct FePt nanoparticles. Chem Mater 18:6414–6424 Ozutsumi K, Uchima Y, Kawashima T (1990) Structure of iron(III)-Tiron complexes in aqueous solution. Anal Sci 6:573–577 Pana O, Leostean C, Soran ML, Stefan M, Macavei S, Gutoiu S, Pop V, Chauvet O (2013) Synthesis and characterization of Fe–Pt based multishell magnetic nanoparticles. J Alloys Compd 574:477–485 Poulin S, Franca R, Moreau-Bélanger L, Sacher E (2010) Confirmation of X-ray photoelectron spectroscopy peak attributions of nanoparticulate iron oxides, using symmetric peak component line shapes. J Phys Chem C 114:10711–10718 Preller T, Knickmeier S, Menzel D, Temel B, Garnweitner G (2020) Exchange bias in FePt–FePt3 thin films by controlled phase transition of blended nanoparticle building blocks. Langmuir 36:2093–2101 Santos LRB, Chartier T, Pagnoux C, Baumard JF, Santillii CV, Pulcinelli SH, Larbot A (2004) Tin oxide nano particle formation using a surface modifying agent. J Eur Ceram Soc 24:3713–3721 Sarmphim P, Soontaranon S, Sirisathitkul C, Harding P, Kijamnajsuk S, Chayasombat B, Pinitsoontorn S, Chingunpitak J (2017) FePt3 nanosuspension synthesized from different precursors—a morphological comparison by SAXS, DLS and TEM. Bull Pol Acad Sci Tech 65:79–84 Sham TK, Yiu YM, Kuhn M, Tan KH (1990) Electronic structure of ordered and disordered Cu3Au: the behavior of the Au 5d bands. Phys Rev B 41:11881 Simaan AJ, Boillot ML, Carrasco R, Cano J, Girerd JJ, Mattioli TA, Ensling J, Spiering H, Gütlich P (2005) Electronic, vibrational, and structural properties of a spin-crossover catecholato-iron system in the solid state: theoretical study of the electronic nature of the doublet and sextet states. Chem Eur J 11:1779–1793 Suber L, Imperatori P, Bauer EM, Porwal R, Peddis D, Cannas C, Ardu A, Mezzi A, Kaciulis S, Notargiacomo A, Pilloni L (2016) Tuning hard and soft magnetic FePt nanocomposites. J Alloys Compd 663:601–609 Sun S, Murray CB, Weller D, Folks L, Moser A (2000) Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287:1989–1992 Taher MA, Asadollahzadeh H, Fazelirad H (2015) Determination of trace amounts of iron by a simple fluore- scence quenching method. Anal Methods 7:6726–6731 Vlaic P, Burzo E (2010) Magnetic behavior of iron-platinum alloys. J Optoelectron Adv Mater 12:1114–1124 Wilson D, Langell MA (2014) XPS analysis of oleylamine/oleic acid capped FePt3 nanoparticles as a function of temperature. Appl Surf Sci 303:6–13 Yamashita T, Hayes P (2008) Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl Surf Sci 254:2441–2449 Yao B, Peng C, Lu P, He Y, Zhang W, Zhang Q (2016) Fabrication of Tiron-TiO2 charge-transfer complex with excellent visible-light photocatalytic performance. Mater Chem Phys 184:298–305 Zheng Q, Zhang ZR, Du J, Lin LL, Xia WX, Zhang J, Bian BR, Liu JP (2019) A novel direct reduction method to synthesize ordered Fe-Pt alloy nanoparticles. J Mater Sci Technol 35:560–567