Facile microwave-assisted synthesis of Dialdehyde−β−Cyclodextrin for evaluation of angiogenesis in wound healing
Tài liệu tham khảo
Ahmadi, 2022, Fabrication, characterization and application of novel nanoemulsion polyvinyl alcohol/chitosan hybrid incorporated with citral for healing of infected full-thickness wound, J. Drug Deliv. Sci. Technol., 74
Angelini, 2020, Green synthesis and properties of silver nanoparticles in sulfobutylether-β-cyclodextrin aqueous solution, Colloids Surf. A Physicochem. Eng. Asp., 633
Azam, 2012, Antimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: a comparative study, Int. J. Nanomed., 7, 6003, 10.2147/IJN.S35347
Bhat, 2012, Cell proliferation on three-dimensional chitosan-agarose-gelatin cryogel scaffolds for tissue engineering applications, J. Biosci. Bioeng., 114, 663, 10.1016/j.jbiosc.2012.07.005
Challa, 2005, Cyclodextrins in drug delivery: an updated review, AAPS PharmSciTech, 6, E329, 10.1208/pt060243
Charhouf, 2014, Characterization of a dialdehyde chitosan generated by periodate oxidation, Int. J. Sci. Basic Appl. Res., 16, 336
Chatjigakis, 1992, Solubility behavior of. beta.-cyclodextrin in water/cosolvent mixtures, Anal. Chem., 64, 1632, 10.1021/ac00038a022
Chen, 2018, A antibacterial collagen membrane crosslinked by the inclusion complex of β-cyclodextrin dialdehyde and ofloxacin for bacterial keratitis, RSC Adv., 8
Cornwell, 1995, A one-step synthesis of cyclodextrin monoaldehydes, Tetrahedron Lett., 36, 8371, 10.1016/0040-4039(95)01808-U
Das, 2018, Surface modification of electrospun PVA/chitosan nanofibers by dielectric barrier discharge plasma at atmospheric pressure and studies of their mechanical properties and biocompatibility, Int. J. Biol. Macromol., 114, 1026, 10.1016/j.ijbiomac.2018.03.115
Das, 2020, Microwave-assisted β−Cyclodextrin/chrysin inclusion complexation: an economical and green strategy for enhanced hemocompatibility and chemosensitivity in vitro, J. Mol. Liq., 310, 10.1016/j.molliq.2020.113257
Ding, 2020, Sustainable dialdehyde polysaccharides as versatile building blocks for fabricating functional materials: an overview, Carbohydr. Polym., 248, 10.1016/j.carbpol.2020.116801
Fife, 2012, Wound care outcomes and associated cost among patients treated in US outpatient wound centers: data from the US Wound Registry, Wounds: Compend. Clin. Res. Pract., 24, 10
Fraschini, 2000, Selective oxidation of primary alcohol groups of β-cyclodextrin mediated by 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO), Carbohydr. Res., 328, 585, 10.1016/S0008-6215(00)00129-4
French, 1950, Studies on the schardinger dextrins. V. Periodate Oxidation1, J. Am. Chem. Soc., 72, 5148, 10.1021/ja01167a095
Frykberg, 2015, Challenges in the treatment of chronic wounds, Adv. Wound Care, 4, 560, 10.1089/wound.2015.0635
Gawande, 2014, Microwave-assisted chemistry: synthetic applications for rapid assembly of nanomaterials and organics, Acc. Chem. Res., 47, 1338, 10.1021/ar400309b
Gedye, 1986, The use of microwave-ovens for rapid organic-synthesis, Tetrahedron Lett., 27, 279, 10.1016/S0040-4039(00)83996-9
Giguere, 1986, Application of commercial microwave-ovens to organic-synthesis, Tetrahedron Lett., 27, 4945, 10.1016/S0040-4039(00)85103-5
Giordano, 2001, Thermal analysis of cyclodextrins and their inclusion compounds, Thermochim. Acta, 380, 123, 10.1016/S0040-6031(01)00665-7
Gorman, 1980, A review antimicrobial activity. Uses and mechanism of action of glutaraldehyde, J. Appl. Bacteriol., 48, 161, 10.1111/j.1365-2672.1980.tb01217.x
Guo, 2018, A facile synthesis of molecularly imprinted polymers and their properties as electrochemical sensors for ethyl carbamate analysis, RSC Adv., 8, 39721, 10.1039/C8RA08213H
Isogai, 2011, TEMPO-oxidized cellulose nanofibers, Nanoscale, 3, 71, 10.1039/C0NR00583E
Jain, 2014, Antimicrobial polymer, Adv. Healthcare Mater., 3, 1969, 10.1002/adhm.201400418
Jayakumar, 2010, Preparation and antimicrobial activity of scleraldehyde from Schizophyllum commune, Carbohydr. Res., 345, 2213, 10.1016/j.carres.2010.07.041
Kobayashi, 1988, Cyclodextrin–dialdehyde prepared by periodate oxidation, Agric. Biol. Chem., 52, 2695
Leisi, 2022, Effectiveness of topical administration of platelet-rich plasma on the healing of methicillin-resistant Staphylococcus aureus infected full-thickness wound model, J. Plast. Reconstr. Aesthetic Surg., 77, 416, 10.1016/j.bjps.2022.11.059
Li, 2015, Ruthenium complexes as antimicrobial agents, Chem. Soc. Rev., 44, 2529, 10.1039/C4CS00343H
Li, 2019, Assessing the impact of curcumin on dual-species biofilms formed by Streptococcus mutans and Candida albicans, Microbiol. Open, 8, e937, 10.1002/mbo3.937
Liang, 2007, In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro, Nat. Protoc., 2, 329, 10.1038/nprot.2007.30
Lou, 2020, Dialdehyde-β-cyclodextrin-crosslinked carboxymethyl chitosan hydrogel for drug release, Carbohydr. Polym., 231, 10.1016/j.carbpol.2019.115678
Lou, 2020, Hydrophilic finishing of pet fabrics by applying chitosan and the periodate oxidized β-cyclodextrin for wash resistance improvement, Fibres Polym., 21, 73, 10.1007/s12221-020-9269-1
Manhas, 2007, A kinetic study of oxidation of β-cyclodextrin by permanganate in aqueous media, Colloids Surf. A Physicochem. Eng. Asp., 295, 165, 10.1016/j.colsurfa.2006.08.048
McDonnell, 1999, Antiseptics and disinfectants: activity, action, and resistance, Clin. Microbiol. Rev., 12, 147, 10.1128/CMR.12.1.147
Morin-Crini, 2013, Environmental applications of water-insoluble β-cyclodextrin–epichlorohydrin polymers, Prog. Polym. Sci., 38, 344, 10.1016/j.progpolymsci.2012.06.005
Moya-Ortega, 2012, Cyclodextrin-based nanogels for pharmaceutical and biomedical applications, Int. J. Pharm., 428, 152, 10.1016/j.ijpharm.2012.02.038
Negut, 2018, Treatment strategies for infected wounds, Molecules, 23, 2392, 10.3390/molecules23092392
Niu, 2018, Advances in the use of functional composites of β-cyclodextrin in electrochemical sensors, Microchim. Acta, 185, 328, 10.1007/s00604-018-2859-6
Nussbaum, 2018, An economic evaluation of the impact, cost, and medicare policy implications of chronic nonhealing wounds, Value Health, 21, 27, 10.1016/j.jval.2017.07.007
Otto, 2009, Staphylococcus epidermidis – the “accidental” pathogen, Nat. Rev. Microbiol., 7, 555, 10.1038/nrmicro2182
Paladini, 2019, Antimicrobial silver nanoparticles for wound healing application: progress and future trends, Materials, 12, 2540, 10.3390/ma12162540
Paradossi, 1997, Networks based on chitosan and oxidized Cyclodextrin-II. Structural and catalytic features of a copper (II)-loaded network, Polym. Gels Netw., 5, 525, 10.1016/S0966-7822(97)00026-9
Polshettiwar, 2008, Aqueous microwave chemistry: a clean and green synthetic tool for rapid drug discovery, Chem. Soc. Rev., 37, 1546, 10.1039/b716534j
Raghunath, 2017, Metal oxide nanoparticles as antimicrobial agents: a promise for the future, Int. J. Antimicrob. Agents, 49, 137, 10.1016/j.ijantimicag.2016.11.011
Rakmai, 2018, Antioxidant and antimicrobial properties of encapsulated guava leaf oil in hydroxypropyl-beta-cyclodextrin, Ind. Crop. Prod., 111, 219, 10.1016/j.indcrop.2017.10.027
Ren, 2018, Preparation and characterization of dialdehyde β-cyclodextrin with broad-spectrum antibacterial activity, Food Res. Int., 111, 237, 10.1016/j.foodres.2018.05.039
Ribatti, 1996, The chick embryo chorioallantoic membrane as an in vivo wound healing model, Pathol. Res. Pract., 192, 1068, 10.1016/S0344-0338(96)80050-1
Salem, 2019, Synthesis of compounds having antimicrobial activity from alginate, Bioorg. Chem., 87, 103, 10.1016/j.bioorg.2019.03.013
Sen, 2021, Human wound and its burden: updated 2020 compendium of estimates, Adv. Wound Care, 10, 281, 10.1089/wound.2021.0026
Sen, 2009, Human skin wounds: a major and snowballing threat to public health and the economy, Wound Repair Regen., 17, 763, 10.1111/j.1524-475X.2009.00543.x
Song, 2008, Thermal decomposition behaviors of β-cyclodextrin, its inclusion complexes of alkyl amines, and complexed β-cyclodextrin at different heating rates, J. Inclusion Phenom. Macrocycl. Chem., 60, 223, 10.1007/s10847-007-9369-1
Song, 2010, The effect of cooking on the antibacterial activity of the dialdehyde starch suspensions, Starch Staerke, 62, 458, 10.1002/star.200900158
Sun, 2022, IDF Diabetes Atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045, Diabetics Res, Clin. Pract., 183
Thi, 2017, Oxidized cyclodextrin-functionalized injectable gelatin hydrogels as a new platform for tissue-adhesive hydrophobic drug delivery, RSC Adv., 7, 34053, 10.1039/C7RA04137C
Trotta, 2000, Thermal degradation of cyclodextrins, Polym. Degrad. Stabil., 69, 373, 10.1016/S0141-3910(00)00084-7
Wegrzynowska-Drzymalska, 2020, Crosslinking of chitosan with dialdehyde chitosan as a new approach for biomedical applications, Molecules, 13, 3413
Xu, 2020, Amino-Functionalized β-cyclodextrin to construct green metal–organic framework materials for CO2 capture, ACS Appl. Mater. Interfaces, 12, 3032, 10.1021/acsami.9b20003
Yang, 2020, Carboxymethyl β-cyclodextrin grafted carboxymethyl chitosan hydrogel-based microparticles for oral insulin delivery, Carbohydr. Polym., 246, 10.1016/j.carbpol.2020.116617
Ye, 2017, Synthesis of oxidized β-cyclodextrin with high aqueous solubility and broad-spectrum antimicrobial activity, Carbohydr. Polym., 117, 97, 10.1016/j.carbpol.2017.08.123
Zeigler-Borowska, 2018, Photochemical reactions in dialdehyde starch, Molecules, 23, 3358, 10.3390/molecules23123358
Zeronian, 1995, Bleaching of cellulose by hydrogen peroxide, Cellulose, 2, 265, 10.1007/BF00811817
Zhang, 2017, Physicochemical properties, antioxidant and antibacterial activities of dialdehyde microcrystalline cellulose, Cellulose, 24, 2287, 10.1007/s10570-017-1255-4