Facile green synthesis of zinc oxide nanoparticles using Ulva lactuca seaweed extract and evaluation of their photocatalytic, antibiofilm and insecticidal activity
Tóm tắt
Từ khóa
Tài liệu tham khảo
Benelli, 2017, Special Issue: applications of green-synthesized nanoparticles in pharmacology, parasitology and entomology, J. Clust. Sci., 28, 1, 10.1007/s10876-017-1165-5
Kumar, 2010, Nanotechnology in agricultural diseases and food safety, J. Phytol., 2, 83
Banumathi, 2017, Exploitation of chemical, herbal and nanoformulated acaricides to control the cattle tick, Rhipicephalus (Boophilus) microplus — a review, Vet. Parasitol., 102, 10.1016/j.vetpar.2017.07.021
Banumathi, 2017, Euphorbia rothiana-fabricated Ag nanoparticles showed high toxicity on Aedes aegypti larvae and growth inhibition on microbial pathogens: a focus on morphological changes in mosquitoes and antibiofilm potential against bacteria, J. Clust. Sci., 2857, 10.1007/s10876-017-1263-4
Sinha, 2009, Nanoparticles fabrication using ambient biological resources, J. Appl. Biosci., 19, 113
Azizi, 2014, Green biosynthesis and characterization of zinc oxide nanoparticles using brown marine macroalga Sargassum muticum aqueous extract, Mater. Lett., 116, 275, 10.1016/j.matlet.2013.11.038
Murugan, 2015, Fighting arboviral diseases: low toxicity on mammalian cells, dengue growth inhibition (in vitro) and mosquitocidal activity of Centroceras clavulatum-synthesized silver nanoparticles, Parasitol. Res., 115, 651, 10.1007/s00436-015-4783-6
Murugan, 2015, Cymbopogon citratus-synthesized gold nanoparticles boost the predation efficiency of copepod Mesocyclops aspericornis against malaria and dengue mosquitoes, Exp. Parasitol., 153, 129, 10.1016/j.exppara.2015.03.017
Thema, 2015, Green synthesis of ZnO nanoparticles via Agathosma betulina natural extract, Mater. Lett., 161, 124, 10.1016/j.matlet.2015.08.052
Madhiyazhagan, 2017, One pot synthesis of silver nanocrystals using the seaweed Gracillaria edulis: biophysical characterization and potential against the filariasis vector Culex quinquefasciatus and the midge Chironomus circumdatus, J. Appl. Phycol., 29, 649, 10.1007/s10811-016-0953-x
Sirelkhatim, 2015, Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism, Nano-Micro. Lett., 7, 219, 10.1007/s40820-015-0040-x
Fortunato, 2005, Recent advances in ZnO transparent thin film transistors, J. Thin. Solid. Films., 487, 205, 10.1016/j.tsf.2005.01.066
Tiwari, 2008, Application of nanoparticles in waste water treatment, World Appl. Sci. J., 3, 417
Yoon, 2006, Fabrication and characterization of ZnO films for biological sensor application of FPW device, ISAF-IEEE., 3, 322
Nie, 2006, Three-dimensional functionalized tetrapod like ZnO nanostructures for plasmid DNA delivery, Small, 2, 621, 10.1002/smll.200500193
Xiong, 2013, ZnO nanoparticles applied to bioimaging and drug delivery, Adv. Mater., 25, 5329, 10.1002/adma.201301732
Malaikozhundan, 2017, Biological therapeutics of Pongamia pinnata coated zinc oxide nanoparticles against clinically important pathogenic bacteria, fungi and MCF-7 breast cancer cells, Microb. Pathog., 104, 268, 10.1016/j.micpath.2017.01.029
Vijayakumar, 2016, Laurus nobilis leaf extract mediated green synthesis of ZnO nanoparticles: characterization and biomedical applications, Biomed Pharmacother, 84, 1213, 10.1016/j.biopha.2016.10.038
Sharma, 2010, Synthesis of ZnO nanoparticles and study of their antibacterial and antifungal properties, Thin Solid Films, 519, 1224, 10.1016/j.tsf.2010.08.073
Applerot, 2009, Enhanced antibacterial activity of nanocrystalline ZnO due to increased ROS-mediated cell injury, Adv. Funct. Mater., 19, 842, 10.1002/adfm.200801081
Vijayakumar, 2017, Control of biofilm forming clinically important bacteria by green synthesized ZnO nanoparticles and its ecotoxicity on Ceriodaphnia cornuta, Microb. Pathog., 107, 88, 10.1016/j.micpath.2017.03.019
Thaya, 2016, Chitosan coated Ag/ZnO nanocomposite and their antibiofilm, antifungal and cytotoxic effects on murine macrophages, Microb. Pathog., 100, 124, 10.1016/j.micpath.2016.09.010
Kirthi, 2011, Acaricidal, pediculocidal and larvicidal activity of synthesized ZnO nanoparticles using wet chemical route against blood feeding parasites, Parasitol. Res., 109, 461, 10.1007/s00436-011-2277-8
Benelli, 2016, Plant-mediated biosynthesis of nanoparticles as an emerging tool against mosquitoes of medical and veterinary importance: a review, Parasitol. Res., 115, 23, 10.1007/s00436-015-4800-9
Benelli, 2016, Green synthesized nanoparticles in the fight against mosquito-borne diseases and cancer a brief review, Enzym. Microb. Technol., 95, 58, 10.1016/j.enzmictec.2016.08.022
Ashokan, 2017, Toxicity on dengue mosquito vectors through Myristica fragrans-synthesized zinc oxide nanorods, and their cytotoxic effects on liver cancer cells (HepG2), J. Clust. Sci., 28, 205, 10.1007/s10876-016-1075-y
Alkaladi, 2014, Antidiabetic activity of zinc oxide and silver nanoparticles on streptozotocin-induced diabetic rats, Int. J. Mol. Sci., 15, 2015, 10.3390/ijms15022015
Singh, 2013, Photocatalytic properties of microwave-synthesized TiO2 and ZnO nanoparticles using malachite green dye, J. Nanopart., 2013, 7, 10.1155/2013/310809
Fujishima, 2000, Titanium dioxide photocatalysis, J. Photochem. Photobiol. C, 1, 1, 10.1016/S1389-5567(00)00002-2
Pandimurugan, 2016, Novel seaweed capped ZnO nanoparticles for effective dye photodegradation and antibacterial activity, Adv. Powder Technol., 27, 1062, 10.1016/j.apt.2016.03.014
Chakrabarti, 2004, Photocatalytic degradation of model textile dyes in waste water using ZnO as semiconductor catalyst, J. Hazard. Mater. B, 112, 269, 10.1016/j.jhazmat.2004.05.013
Bhatkhande, 2001, Photocatalytic degradation for environmental applications — a review, J. Chem. Technol. Biotechnol., 77, 102, 10.1002/jctb.532
Tayyebi, 2016, ZnO quantum dots-graphene composites: formation mechanism and enhanced photocatalytic activity for degradation of methyl orange dye, J. Alloys Compd., 663, 738, 10.1016/j.jallcom.2015.12.169
Veerakumar, 2014, Mosquito larvicidal properties of silver nanoparticles synthesized using Heliotropium indicum (Boraginaceae) against Aedes aegypti, Anopheles stephensi, and Culex quinquefasciatus (Diptera: Culicidae), Parasitol. Res., 113, 2363, 10.1007/s00436-014-3895-8
Benelli, 2017, Current vector control challenges in the fight against malaria, Acta Trop., 174, 91, 10.1016/j.actatropica.2017.06.028
Harrington, 2005, Dispersal of the dengue vector Aedes aegypti within and between rural communities part 1, Am. J. Trop. Med. Hyg., 72, 209, 10.4269/ajtmh.2005.72.209
Murugan, 2011, Use of plant products and copepods for control of the dengue vector, Aedes aegypti, Hydrobiologia, 666, 331, 10.1007/s10750-011-0629-0
Benelli, 2016, Declining malaria, rising dengue and zika virus: insights for mosquito vector control, Parasitol. Res., 115, 1747, 10.1007/s00436-016-4971-z
Benelli, 2017, Commentary: making green pesticides greener? The potential of plant products for nanosynthesis and pest control, J. Clust. Sci., 28, 3, 10.1007/s10876-016-1131-7
Lardeux, 2002, Control of the Aedes vector of the dengue viruses and Wuchereria bancrofti: the French Polynesian experience, Ann. Trop. Med. Parasitol., 96, 105, 10.1179/000349802125002455
Benelli, 2015, Research in mosquito control: current challenges for a brighter future, Parasitol. Res., 114, 2801, 10.1007/s00436-015-4586-9
Benelli, 2015, Plant-borne ovicides in the fight against mosquito vectors of medical and veterinary importance: a systematic review, Parasitol. Res., 114, 3201, 10.1007/s00436-015-4656-z
Deepak, 2016, Structural characterization and evaluation of mosquito-larvicidal property of silver nanoparticles synthesized from the seaweed, Turbinaria ornata (Turner) J. Agardh 1848, Artificial cells, Nanomedicine, and Biotechnology
Ishwarya, 2017, Eco-friendly fabrication of Ag nanostructures using the seed extract of Pedalium murex, an ancient Indian medicinal plant: histopathological effects on the zika virus vector Aedes aegypti and inhibition of biofilm-forming pathogenic bacteria, J. Photochem. Photobiol. B, 174, 133, 10.1016/j.jphotobiol.2017.07.026
Murugan, 2015, Toxicity of seaweed-synthesized silver nanoparticles against the filariasis vector Culex quinquefasciatus and its impact on predation efficiency of the cyclopoid crustacean Mesocyclops longisetus, Parasitol. Res., 114, 2243, 10.1007/s00436-015-4417-z
Shankar, 2016, A review on the biosynthesis of metallic nanoparticles (gold and silver) using bio-components of microalgae: formation mechanism and applications, Enzym. Microb. Technol., 95, 28, 10.1016/j.enzmictec.2016.10.015
Ramimoghadam, 2013, Synthesis and characterization of ZnO nanostructures using palm olein as biotemplate, Chem. Cen. J., 7, 71, 10.1186/1752-153X-7-71
Suresh, 2015, Green synthesis of multifunctional zincoxide (ZnO) nanoparticles using Cassia fistula plant extract and their photodegradative, antioxidant and antibacterial activities, Mater. Sci. Semicond. Process., 31, 446, 10.1016/j.mssp.2014.12.023
World Health Organization, 1996, Report of the WHO informal consultation on the evaluation on the testing of insecticides CTD/WHO PES/IC/96, World Health Organization, 1, 69
Vijayakumar, 2015, Plectranthus amboinicus leaf extract mediated synthesis of zinc oxide nanoparticles and its control of methicillin resistant Staphylococcus aureus biofilm and blood sucking mosquito larvae, Spectrochim. Acta A Mol. Biomol. Spectrosc., 137, 886, 10.1016/j.saa.2014.08.064
Narendhran, 2016, Biogenic ZnO nanoparticles synthesized using L. aculeata leaf extract and their antifungal activity against plant fungal pathogens, Bull. Mater. Sci., 39, 1, 10.1007/s12034-015-1136-0
Vanathi, 2014, Biosynthesis and characterization of phyto mediated zinc oxide nanoparticles: a green chemistry approach, Mater. Lett., 13, 134
Darroudi, 2013, Facile synthesis, characterization, and evaluation of neuro toxicity effect of cerium oxide nanoparticles, Ceram. Int., 39, 6917, 10.1016/j.ceramint.2013.02.026
Harding, 2006, 83
Byrappa, 2006, Photocatalytic degradation of rhodamine B dye using hydrothermally synthesized ZnO, Bull. Mater. Sci., 29, 433, 10.1007/BF02914073
Zhao, 2009, Photocatalytic degradation of omethoate using NaY zeolite-supported TiO2, Front. Chem. Eng. China, 3, 206, 10.1007/s11705-009-0053-4
Hayat, 2010, Kinetic study of laser induced photo catalytic degradation of dye (alizarin yellow) from wastewater using nanostructured ZnO, J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng., 45, 1413, 10.1080/10934529.2010.500934
Lewis, 2001, Riddle of biofilm resistance, Antimicrob. Agents Chemother., 45, 999, 10.1128/AAC.45.4.999-1007.2001
Dwivedi, 2014, Reactive oxygen species mediated bacterial biofilm inhibition via zinc oxide nanoparticles and their statistical determination, PLoS One, 9, 111289, 10.1371/journal.pone.0111289
Hsueh, 2015, ZnO nanoparticles affect Bacillus subtilis cell growth and biofilm formation, PLoS One, 10, 1, 10.1371/journal.pone.0128457
Brayner, 2006, Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium, Nano Lett., 6, 866, 10.1021/nl052326h
Jones, 2008, Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms, FEMS Microbiol. Lett., 279, 71, 10.1111/j.1574-6968.2007.01012.x
Gajjar, 2009, Antimicrobial activities of commercial nanoparticles against an environmental soil microbe, Pseudomonas putida KT2440, J. Biol. Eng., 3, 1, 10.1186/1754-1611-3-9
Dimkpa, 2011, Responses of a soil bacterium, Pseudomonas chlororaphis O6 to commercial metal oxide nanoparticles compared with responses to metal ions, Environ. Pollut., 159, 1749, 10.1016/j.envpol.2011.04.020
Raghupathi, 2011, Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles, Langmuir, 27, 4020, 10.1021/la104825u
Seil, 2011, Reduced Staphylococcus aureus proliferation and biofilm formation on zinc oxide nanoparticle PVC composite surfaces, Acta Biomater., 7, 2579, 10.1016/j.actbio.2011.03.018
Lee, 2014, ZnO nanoparticles inhibit Pseudomonas aeruginosa biofilm formation and virulence factor production, Microbiol. Res., 169, 888, 10.1016/j.micres.2014.05.005
Ashajyothi, 2016, Antibiofilm activity of biogenic copper and zinc oxide nanoparticles-antimicrobials collegiate against multiple drug resistant bacteria a nanoscale approach, J. Nanostruct. Chem., 6, 329, 10.1007/s40097-016-0205-2
Al-Mehmadi, 2010, Larvicidal and histological effects of Melia azedarach extract on Culex quinquefasciatus Say larvae (Diptera: Culicidae), J. King Saud, Univ. Sci., 22, 77
Heinlaan, 2008, Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus, Chemosphere, 71, 1308, 10.1016/j.chemosphere.2007.11.047
Aruoja, 2009, Toxicity nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata, Sci. Total Environ., 407, 1461, 10.1016/j.scitotenv.2008.10.053
Benelli, 2017, Mosquito control with green nanopesticides: towards the one health approach? A review of non-target effects, Environ. Sci. Pollut. Res., 1
Banumathi, 2017, Toxicity of herbal extracts used in ethno-veterinary medicine and green-encapsulated ZnO nanoparticles against Aedes aegypti and microbial pathogens, Parasitol. Res., 116, 1637, 10.1007/s00436-017-5438-6
Fallatah, 2010, Histopathological effects of fenugreek (Trigonella foenumgraceum) extracts on the larvae of the mosquito Culex quinquefasciatus, JASMR., 5, 123
Kalimuthu, 2017, Control of dengue and Zika virus vector Aedes aegypti using the predatory copepod Megacyclops formosanus: synergy with Hedychium coronarium-synthesized silver nanoparticles and related histological changes in targeted mosquitoes, Process. Saf. Environ., 109, 82, 10.1016/j.psep.2017.03.027