Facile fabrication of flexible, large-sized organic nanoporous membrane by electrospinning technique based on microporous polymer nanoparticles

Microporous and Mesoporous Materials - Tập 317 - Trang 110955 - 2021
Yaoyu Pan1, Ruisi Li1, Peihang Li1, Yun Wang1, Yalin Zhu1, Ziqiang Xu1, Xueqin Chen1,2, Zhengguang Sun1, Cao Li1,3, Bingbing Jiang1,3,2
1Key Laboratory of Polymer Material in Hubei, Hubei University, Wuhan, 430062, China
2Key Laboratory of Green Preparation and Application for Functional Materials, Ministry of Education, Hubei University, Wuhan, 430062, China
3Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Wuhan, 430062, China

Tài liệu tham khảo

Zou, 2017, Porous organic polymers for post-combustion carbon capture, Adv. Mater., 29, 10.1002/adma.201700229 Hug, 2014, A fluorene based covalent triazine framework with high CO2 and H-2 capture and storage capacities, J. Mater. Chem. A., 2, 5928, 10.1039/C3TA15417C Zhang, 2012, Functional porous organic polymers for heterogeneous catalysis, Chem. Soc. Rev., 41, 2083, 10.1039/C1CS15227K Sun, 2015, Porous polymer catalysts with hierarchical structures, Chem. Soc. Rev., 44, 6018, 10.1039/C5CS00198F Qian, 2016, Bottom-up synthesis of chiral covalent organic frameworks and their bound capillaries for chiral separation, Nat. Commun., 7, 10.1038/ncomms12104 Shahmirzaee, 2020, Development of a powerful zeolitic imidazolate framework (ZIF-8)/carbon fiber nanocomposite for separation of hydrocarbons and crude oil from wastewater, Micropor. Mesopro. Mat., 307 Della Rocca, 2011, Nanoscale metal-organic frameworks for biomedical imaging and drug delivery, Accounts Chem. Res., 44, 957, 10.1021/ar200028a Bai, 2016, Nanoscale covalent organic frameworks as smart carriers for drug delivery, Chem. Commun., 52, 4128, 10.1039/C6CC00853D Cui, 2020, Covalent organic framework with bidentate ligand sites as reliable fluorescent sensor for Cu2+, Microporous Mesoporous Mater., 299, 10.1016/j.micromeso.2020.110122 Xu, 2019, Covalent organic frameworks on reduced graphene oxide with enhanced electrochemical performance, Microporous Mesoporous Mater., 287, 65, 10.1016/j.micromeso.2019.05.054 Xu Tan, 2017, Hypercrosslinked porous polymer materials: design, synthesis, and applications, Chem. Soc. Rev., 46, 3322, 10.1039/C6CS00851H Li, 2019, One-pot synthesis of viologen-based hypercrosslinked polymers for efficient volatile iodine capture, Microporous Mesoporous Mater., 279, 186, 10.1016/j.micromeso.2018.12.029 Xu, 2013, Conjugated microporous polymers: design, synthesis and application, Chem. Soc. Rev., 42, 8012, 10.1039/c3cs60160a Geng, 2019, Synthesis of tetraphenylethylene-based fluorescent conjugated microporous polymers for fluorescent sensing and adsorbing iodine, Microporous Mesoporous Mater., 284, 468, 10.1016/j.micromeso.2019.04.036 Cheng, 2014, Conjugated polymers of intrinsic microporosity (C-PIMs), Adv. Funct. Mater., 24, 5219, 10.1002/adfm.201401001 Wu, 2017, Mixed matrix membranes comprising polymers of intrinsic microporosity and covalent organic framework for gas separation, J. Membr. Sci., 528, 273, 10.1016/j.memsci.2017.01.042 Wang, 2014, Adsorption removal of organic dyes on covalent triazine framework (CTF), Microporous Mesoporous Mater., 187, 63, 10.1016/j.micromeso.2013.12.016 Ren, 2012, Porous, fluorescent, covalent triazine-based frameworks via room-temperature and microwave-assisted synthesis, Adv. Mater., 24, 2357, 10.1002/adma.201200751 Ben, 2011, Gas storage in porous aromatic frameworks (PAFs), Energy Environ. Sci., 4, 3991, 10.1039/c1ee01222c Yan, 2015, Highly efficient enrichment of volatile iodine by charged porous aromatic frameworks with three sorption sites, Angew. Chem. Int. Ed., 54, 12733, 10.1002/anie.201503362 Ben, 2009, Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area, Angew. Chem. Int. Ed., 48, 9457, 10.1002/anie.200904637 Lee, 2016, Hyperporous carbons from hypercrosslinked polymers, Adv. Mater., 28, 9804, 10.1002/adma.201603051 Zhang, 2012, Preparation and characterization of micro-mesoporous hypercrosslinked polymeric adsorbent and its application for the removal of VOCs, Chem. Eng. J., 192, 8, 10.1016/j.cej.2012.03.071 Yang, 2016, Solution-processable hypercrosslinked polymers by low cost strategies: a promising platform for gas storage and separation, J. Mater. Chem. A., 4, 15072, 10.1039/C6TA05226F Li, 2016, Massive preparation of pitch-based organic microporous polymers for gas storage, Chem. Commun., 52, 2780, 10.1039/C5CC07908J Ghafari, 2017, One-step hyper-cross-linking of porous styrenic polymers using dichloroalkane cross-linkers to maintain hydrophobicity, Polymer, 116, 278, 10.1016/j.polymer.2017.03.082 Lau, 2019, Continuous flow knitting of a triptycene hypercrosslinked polymer, Chem. Commun., 55, 8571, 10.1039/C9CC03731D Pautova, 2020, Microextraction of aromatic microbial metabolites by packedhypercrosslinked polystyrene from blood serum, J. Pharmaceut. Biomed., 177, 10.1016/j.jpba.2019.112883 Wang, 2020, Facile synthesis of tubular magnetic carbon nanofibers by hypercrosslinked polymer design for microwave adsorption, J. Am. Ceram. Soc., 103, 5706, 10.1111/jace.17302 Qiu, 2014, Metal-organic framework membranes: from synthesis to separation application, Chem. Soc. Rev., 43, 6116, 10.1039/C4CS00159A Shekhah, 2011, MOF thin films: existing and future applications, Chem. Soc. Rev., 40, 1081, 10.1039/c0cs00147c Ding, 2016, Multi-length scale porous polymer films from hypercrosslinked breath figure arrays, J. Colloid Interface Sci., 461, 179, 10.1016/j.jcis.2015.09.031 P. Shi, X. Chen, Z. Sun, C. Li, Z. Xu, X. Jiang, B. Jiang, Thickness controllable hypercrosslinked porous polymer nanofilm with high CO2 capture capacity, J. Colloid Interface Sci. 563 (15) 272-280. https://doi.org/10.1016/j.jcis.2019.12.038. Zhu, 2013, Electrospun Sb/C fibers for a stable and fast sodium-ion battery anode, ACS Nano, 7, 6378, 10.1021/nn4025674 Xue, 2017, Electrospun nanofibers: new concepts, materials, and applications, Accounts Chem. Res., 50, 1976, 10.1021/acs.accounts.7b00218 Zhang, 2016, Direct fabrication of hybrid nanofibres composed of SiO2-PMMAnanospheres via electrospinning, J. Colloids Surf. B: Biointerfaces, 144, 238, 10.1016/j.colsurfb.2016.04.025 Pan, 2020, New J. Chem., 44, 21125, 10.1039/D0NJ04976J Liu, 2013, High-flux microfiltration filters based on electrospun polyvinylalcohol nanofibrous membranes, Polymer, 54, 548, 10.1016/j.polymer.2012.11.064 Zhang, 2013, Superhydrophobic and superoleophilic PVDF membranes for effective separation of water-in-oil emulsions with high flux, Adv. Mater., 25, 2071, 10.1002/adma.201204520 Krumova, 2000, Effect of crosslinking on the mechanical and thermal properties of poly(vinyl alcohol), Polymer, 41, 9265, 10.1016/S0032-3861(00)00287-1 Ouyang, 2018, Fabrication and adsorption performance for CO2 capture of advanced nanoporous microspheres enriched with amino acids, J. Colloid Interface Sci., 532, 433, 10.1016/j.jcis.2018.07.121 Liu, 2019, Synthesis and evaluation of N, O‐doped hypercrosslinked polymers and their performance in CO2 capture, Adv. Mater., 33 Li, 2017, Blend-electrospun poly(vinylidene fluoride)/stearic acid membranes for efficient separation of water-in-oil emulsions, Colloid. Surface., 538, 494, 10.1016/j.colsurfa.2017.11.043 Reshmi, 2017, Fabrication of superhydrophobic polycaprolactone/beeswax electrospun membranes for high-efficiency oil/water separation, RSC Adv., 7, 2092, 10.1039/C6RA26123J Sun, 2020, Core-sheath structured TiO2@PVDF/PAN electrospun membranes for photocatalysis and oil-water separation, Polym. Compos., 41, 1013, 10.1002/pc.25433 Lee, 2013, Electrospun polystyrene nanofiber membrane with superhydrophobicity and superoleophilicity for selective separation of water and low viscous, Oil, 5, 10597 Li, 2011, Superhydrophobic conjugated microporous polymers for separation and adsorption, Energ. Envirom. Sci., 4, 2062, 10.1039/c1ee01092a Ghaffar, 2019, Underwater superoleophobic PVA-GO nanofibrous membranes for emulsified oily water purification, Environ. Sci.: Nano, 6, 3723 Crespy, 2012, Colloid-electrospinning: fabrication of multicompartment nanofi bers by the electrospinning of organic or/and inorganic dispersions and emulsions, Macromol. Rapid Commun., 33, 1978, 10.1002/marc.201200549 Heo, 2018, Synthesis of PAN/PVDF nanofiber composites-based carbon adsorbents for CO2 capture, Compos. B Eng., 156, 95, 10.1016/j.compositesb.2018.08.057 Tan, 2020, Reversible super wettability switching of a conductive polymer membrane for oil-water separation and self-cleaning, J. Membr. Sci., 605, 10.1016/j.memsci.2020.118088