Chế tạo dễ dàng các hạt nano hợp kim Pt–Ni hỗ trợ trên graphene oxide khử để phục vụ như những chất điện xúc tác xuất sắc cho phản ứng tiến hóa hydro trong môi trường kiềm

Springer Science and Business Media LLC - Tập 21 - Trang 1-15 - 2019
Zuokai Du1, Yilong Wang1, Junsheng Li1, Jinping Liu1
1School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, People’s Republic of China

Tóm tắt

Phát triển những điện xúc tác hiệu suất cao trong điện phân kiềm có ý nghĩa quan trọng về việc giảm thiểu tiêu tốn năng lượng không cần thiết trong quá trình sản xuất hydro. Trong nghiên cứu này, chúng tôi đã trình bày một chiến lược giảm hóa học một bước để chế tạo graphene oxide khử (rGO) hỗ trợ các hạt nano hợp kim platinum–nickel như những điện xúc tác xuất sắc cho phản ứng tiến hóa hydro (HER) ở điều kiện kiềm. Các điện xúc tác nano hợp kim hỗ trợ graphene được tạo ra bằng cách kiểm soát tỷ lệ mol của các tiền chất bimetallic. Chúng tôi xác nhận rằng các loại nickel trên bề mặt của các điện xúc tác nano được tổng hợp có xu hướng bị oxi hóa thành nickel hydroxide trong quá trình chế tạo. Các điện xúc tác nano của chúng tôi được tổng hợp với tỷ lệ mol tương đương giữa muối platinum và nickel cho thấy hoạt tính điện xúc tác rất cao cho HER hơn so với các loại Pt/C thương mại và các loại Pt hỗ trợ graphene trong cùng điều kiện. Sự cải thiện về hiệu suất không chỉ được cho là do lớp nickel hydroxide trên các điện xúc tác nano của chúng tôi thúc đẩy quá trình phân hủy nước trong môi trường kiềm mà còn do sự thay thế một phần các nguyên tử Pt bằng các nguyên tử Ni làm giảm năng lượng liên kết Pt–H và cải thiện quá trình desorption các nguyên tử hydrogen trên các điện xúc tác nano hợp kim Pt–Ni. Hơn nữa, các điện xúc tác nano của chúng tôi cũng thể hiện tính ổn định xúc tác HER tuyệt vời. Kết quả của chúng tôi sẽ cung cấp một chiến lược đơn giản và hiệu quả trong việc phát triển các điện xúc tác nano composite chứa Pt xuất sắc cho các ứng dụng trong điện xúc tác.

Từ khóa

#điện xúc tác #phản ứng tiến hóa hydro #graphene oxide khử #hợp kim platinum-nickel #môi trường kiềm

Tài liệu tham khảo

Bao X, Wang J, Lian X, Jin H, Wang S, Wang Y (2017) Ni/nitrogen-doped graphene nanotubes acted as a valuable tailor for remarkably enhanced hydrogen evolution performance of platinum-based catalysts. J Mater Chem A 5:16249–16254 Bian J, Lan F, Wang Y, Ren K, Zhao S, Li W, Chen Z, Li J, Guan J (2018) Facile morphology-controlled synthesis of nickel-coated graphite core-shell particles for excellent conducting performance of polymer-matrix composites and enhanced catalytic reduction of 4-nitrophenol. Nanotechnology 29:145602 Biesinger MC, Payne BP, Grosvenor AP, Lau LWM, Gerson AR, Smart RSC (2011) Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl Surf Sci 257:2717–2730 Chen S, Sheng WC, Yabuuchi N, Ferreira PJ, ALFaYS H (2009) Origin of oxygen reduction reaction activity on “Pt3Co” nanoparticles: atomically resolved chemical compositions and structures. J Phys Chem C 113:1109–1125 Chen C, Kang Y, Huo Z, Zhu Z, Huang W, Xin HL, Snyder JD, Li D, Herron JA, Mavrikakis M, Chi M, More KL, Li Y, Markovic NM, Somorjai GA, Yang P, Stamenkovic VR (2014) Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 343:1339–1343 Chen Y, Chen Y, Yu G, Chen W, Liu Y, Li GD, Zhu P, Tao Q, Li Q, Liu J, Shen X, Li H, Huang X, Wang D, Asefa T, Zou X (2017) Highly active, nonprecious electrocatalyst comprising borophene subunits for the hydrogen evolution reaction. J Am Chem Soc 139:12370–12373 Choi SI, Xie S, Shao M, Odell JH, Lu N, Peng HC, Protsailo L, Guerrero S, Park J, Xia X, Wang J, Kim MJ, Xia Y (2013) Synthesis and characterization of 9 nm Pt-Ni octahedra with a record high activity of 3.3 A/mgPt for the oxygen reduction reaction. Nano Lett 13:3420–3425 Choi S-I, Shao M, Lu N, Ruditskiy A, Peng H, Park J, Guerrero S, Wang J, Kim M, Xia Y (2014) Synthesis and characterization of Pd@Pt-Ni core-shell octahedra with high activity toward oxygen reduction. ACS Nano 8:10363–10371 Darabdhara G, Amin MA, Mersal GAM, Ahmed EM, Das MR, Zakaria MB, Malgras V, Alshehri SM, Yamauchi Y, Szunerits S, Boukherroub R (2015) Reduced graphene oxide nanosheets decorated with Au, Pd and Au–Pd bimetallic nanoparticles as highly efficient catalysts for electrochemical hydrogen generation. J Mater Chem A 3:20254–20266 Fan X, Zhang G, Zhang F (2015) Multiple roles of graphene in heterogeneous catalysis. Chem Soc Rev 44:3023–3035 Fang Z, Hao Z, Dong Q, Cui Y (2018) Bimetallic NiFe2O4 synthesized via confined carburization in NiFe-MOFs for efficient oxygen evolution reaction. J Nanopart Res 20:106 Fernández A, Arzac GM, Vogt UF, Hosoglu F, Borgschulte A, Jiménez de Haro MC, Montes O, Züttel A (2016) Investigation of a Pt containing washcoat on SiC foam for hydrogen combustion applications. Appl Catal B Environ 180:336–343 Graf D, Molitor F, Ensslin K, Stampfer C, Jungen A, Hierold C, Wirtz L (2007) Spatially resolved raman spectroscopy of single- and few-layer graphene. Nano Lett 7:238–242 Hao Z, Yang S, Niu J, Fang Z, Liu L, Dong Q, Song S, Zhao Y (2018) A bimetallic oxide Fe1.89Mo4.11O7 electrocatalyst with highly efficient hydrogen evolution reaction activity in alkaline and acidic media. Chem Sci 9:5640–5645 He T, Kreidler E, Xiong L, Ding E (2007) Combinatorial screening and nano-synthesis of platinum binary alloys for oxygen electroreduction. J Power Sources 165:87–91 Hu C, Cao Y, Yang L, Bai Z, Guo Y, Wang K, Xu P, Zhou J (2011) Preparation of highly dispersed Pt-SnOX nanoparticles supported on multi-walled carbon nanotubes for methanol oxidation. Appl Surf Sci 257:7968–7974 Hu Y, Wu P, Yin Y, Zhang H, Cai C (2012) Effects of structure, composition, and carbon support properties on the electrocatalytic activity of Pt-Ni-graphene nanocatalysts for the methanol oxidation. Appl Catal B Environ 111-112:208–217 Kavian R, Choi S-I, Park J, Liu T, Peng HC, Lu N, Wang J, Kim MJ, Xia Y, Lee SW (2016) Pt–Ni octahedral nanocrystals as a class of highly active electrocatalysts toward the hydrogen evolution reaction in an alkaline electrolyte. J Mater Chem A 4:12392–12397 Kim H, Namgung R, Singha K, Oh IK, Kim WJ (2011) Graphene oxide-polyethylenimine nanoconstruct as a gene delivery vector and bioimaging tool. Bioconjug Chem 22:2558–2567 Konopka DA, Li M, Artyushkova K, Marinkovic N, Sasaki K, Adzic R, Ward TL, Atanassov P (2011) Platinum supported on NbRuyOz as electrocatalyst for ethanol oxidation in acid and alkaline fuel cells. J Phys Chem C 115:3043–3056 Kou R, Shao Y, Mei D, Nie Z, Wang D, Wang C, Viswanathan VV, Park S, Aksay IA, Lin Y, Wang Y, Liu J (2011) Stabilization of electrocatalytic metal nanoparticles at metal-metal oxide-graphene triple junction points. J Am Chem Soc 133:2541–2547 Kwon S, Hyeon T (2011) Formation mechanisms of uniform nanocrystals via hot-injection and heat-up methods. Small 7:2685–2702 Li L, Wu Y, Lu J, Nan C, Li Y (2013a) Synthesis of Pt-Ni/graphene via in situ reduction and its enhanced catalyst activity for methanol oxidation. Chem Commun 49:7486–7488 Li F, Guo Y, Li R, Wu F, Liu Y, Sun X, Li C, Wang W, Gao J (2013b) A facile method to synthesize supported Pd–Au nanoparticles using graphene oxide as the reductant and their extremely high electrocatalytic activity for the electrooxidation of methanol and ethanol. J Mater Chem A 1:6579–6587 Li SS, Lv JJ, Hu YY, Zheng JN, Chen JR, Wang AJ, Feng JJ (2014) Facile synthesis of porous Pt–Pd nanospheres supported on reduced graphene oxide nanosheets for enhanced methanol electrooxidation. J Power Sources 247:213–218 Li J, Zhou P, Li F, Ren R, Liu Y, Niu J, Ma J, Zhang X, Tian M, Jin J, Ma J (2015) Ni@Pd/PEI–rGO stack structures with controllable Pd shell thickness as advanced electrodes for efficient hydrogen evolution. J Mater Chem A 3:11261–11268 Liu L, Guan J, Shi W, Sun Z, Zhao J (2010) Facile synthesis and growth mechanism of flowerlike Ni-Fe alloy nanostructures. J Phys Chem C 114:13565–13570 Liu Y, Yu G, Li GD, Sun Y, Asefa T, Chen W, Zou X (2015) Coupling Mo2C with nitrogen-rich nanocarbon leads to efficient hydrogen-evolution electrocatalytic sites. Angew Chem Int Ed 54:10752–10757 Liu L, Chen R, Liu W, Wu J, Gao D (2016) Catalytic reduction of 4-nitrophenol over Ni-Pd nanodimers supported on nitrogen-doped reduced graphene oxide. J Hazard Mater 320:96–104 Liu Y, Li Q, Si R, Li G, Li W, Liu D, Wang D, Sun L, Zhang Y, Zou X (2017) Coupling sub-nanometric copper clusters with quasi-amorphous cobalt sulfide yields efficient and robust electrocatalysts for water splitting reaction. Adv Mater 29:1606200 Liu Y, Liang X, Gu L, Zhang Y, Li G, Zou X, Chen J (2018) Corrosion engineering towards efficient oxygen evolution electrodes with stable catalytic activity for over 6000 hours. Nat Commun 9:2609 Loukrakpam R, Luo J, He T, Chen Y, Xu Z, Njoki PN, Wanjala BN, Fang B, Mott D, Yin J, Klar J, Powell B, Zhong C (2011) Nanoengineered PtCo and PtNi catalysts for oxygen reduction reaction: an assessment of the structural and electrocatalytic properties. J Phys Chem C 115:1682–1694 Lu Y, Jiang Y, Wu H, Chen W (2013) Nano-PtPd cubes on graphene exhibit enhanced activity and durability in methanol electrooxidation after CO stripping–cleaning. J Phys Chem C 117:2926–2938 Lv R, Li Q, Botello-Méndez AR, Hayashi T, Wang B, Berkdemir A, Hao Q, Elias AL, Cruz-Silva R, Gutierrez HR, Kim YA, Muramatsu H, Zhu J, Endo M, Terrones H, Charlier JC, Pan M, Terrones M (2012) Nitrogen-doped graphene: beyond single substitution and enhanced molecular sensing. Sci Rep 2:586 Mezzavilla S, Baldizzone C, Swertz AC, Hodnik N, Pizzutilo E, Polymeros G, Keeley GP, Knossalla J, Heggen M, Mayrhofer KJJ, Schüth F (2016) Structure–activity–stability relationships for space-confined PtxNiy nanoparticles in the oxygen reduction reaction. ACS Catal 6:8058–8068 Parra RE, Cable JW (1980) Neutron study of magnetic-moment distribution in Ni-Pt alloys. Phys Rev B 21:5494–5504 Pylypenko S, Borisevich A, More KL, Corpuz AR, Holme T, Dameron AA, Olson TS, Dinh HN, Gennett T, O’Hayre R (2013) Nitrogen: unraveling the secret to stable carbon-supported Pt-alloy electrocatalysts. Energy Environ Sci 6:2957 Sahoo PK, Panigrahy B, Bahadur D (2014) Facile synthesis of reduced graphene oxide/Pt–Ni nanocatalysts: their magnetic and catalytic properties. RSC Adv 4:48563–48571 Shi YC, Chen SS, Feng JJ, Xiao LX, ping WW, Jun WA (2018) Dicationic ionic liquid mediated fabrication of Au@Pt nanoparticles supported on reduced graphene oxide with highly catalytic activity for oxygen reduction and hydrogen evolution. Appl Surf Sci 441:438–447 Su S, Zhang C, Yuwen L, Liu X, Wang L, Fan C, Wang L (2016) Uniform Au@Pt core-shell nanodendrites supported on molybdenum disulfide nanosheets for the methanol oxidation reaction. Nanoscale 8:602–608 Subbaraman R, Tripkovic D, Strmcnik D, Chang KC, Uchimura M, Paulikas AP, Stamenkovic V, Markovic NM (2011) Enhancing hydrogen evolution activity in water splitting by tailoring Li+-Ni(OH)2-Pt interfaces. Science 334:1256–1260 Subbaraman R, Tripkovic D, Chang KC, Strmcnik D, Paulikas AP, Hirunsit P, Chan M, Greeley J, Stamenkovic V, Markovic NM (2012) Trends in activity for the water electrolyser reactions on 3d M(Ni,Co,Fe,Mn) hydr(oxy)oxide catalysts. Nat Mater 11:550–557 Tang L, Wang Y, Li Y, Feng H, Lu J, Li J (2009) Preparation, structure, and electrochemical properties of reduced graphene sheet films. Adv Funct Mater 19:2782–2789 Wang ZB, Zhao CR, Shi PF, Yang YS, Yu ZB, Wang WK, Yin GP (2010) Effect of a carbon support containing large mesopores on the performance of a Pt-Ru-Ni/C catalyst for direct methanol fuel cells. J Phys Chem C 114:672–677 Wang X, Sun G, Routh P, Kim DH, Huang W, Chen P (2014) Heteroatom-doped graphene materials: syntheses, properties and applications. Chem Soc Rev 43:7067–7098 Wang Y, Wen J, Zhao S, Chen Z, Ren K, Sun J, Guan J (2015) Surface thiolation of Al microspheres to deposite thin and compact Ag shells for high conductivity. Langmuir 31:13441–13451 Wang Y, Luo S, Ren K, Zhao S, Chen Z, Li W, Guan J (2016) Facile preparation of graphite particles fully coated with thin Ag shell layers for high performance conducting and electromagnetic shielding composite materials. J Mater Chem C 4:2566–2578 Wang Y, Ren K, Sun J, Li W, Zhao S, Chen Z, Guan J (2017) Ultralow content silver densely-coated glass microsphere for high performance conducting polymer-matrix composites. Compos Sci Technol 140:89–98 Wu X, Fan Z, Ling X, Wu S, Chen X, Hu X, Zhuang N, Chen J (2018) Enhanced lithium-ion storage and hydrogen evolution reaction catalysis of MoS2/graphene nanoribbons hybrids with loose interlaced three-dimension structure. J Nanopart Res 20:156 Xu Y, Li Y, Yin S, Yu H, Xue H, Li X, Wang H, Wang L (2018) Ultrathin nitrogen-doped graphitized carbon shell encapsulating CoRu bimetallic nanoparticles for enhanced electrocatalytic hydrogen evolution. Nanotechnology 29:225403 Yang YW, Feng G, Lu ZH, Hu N, Zhang F, Chen XS (2014) In situ synthesis of reduced graphene oxide supported Co nanoparticles as efficient catalysts for hydrogen generation from NH3BH3. Acta Phys-Chim Sin 30:1180–1186 Yang H, Wang C, Hu F, Zhang Y, Lu H, Wang Q (2017) Atomic-scale Pt clusters decorated on porous α-Ni(OH)2 nanowires as highly efficient electrocatalyst for hydrogen evolution reaction. Sci China Mater 60:1121–1128 Yin H, Zhao S, Zhao K, Muqsit A, Tang H, Chang L, Zhao H, Gao Y, Tang Z (2015) Ultrathin platinum nanowires grown on single-layered nickel hydroxide with high hydrogen evolution activity. Nat Commun 6:6430 Yu X, Manthiram A (2018) Scalable membraneless direct liquid fuel cells based on a catalyst-selective strategy. Energ Environ Mater 1:13–19 Zhang W, Lai W, Cao R (2017a) Energy-related small molecule activation reactions: oxygen reduction and hydrogen and oxygen evolution reactions catalyzed by porphyrin- and corrole-based systems. Chem Rev 117:3717–3797 Zhang T, Li SC, Zhu W, Zhang ZP, Gu J, Zhang YW (2017b) Shape-tunable Pt-Ir alloy nanocatalysts with high performance in oxygen electrode reactions. Nanoscale 9:1154–1165 Zhang R, El-Refaei SM, Russo PA, Pinna N (2018a) Metal phosphonate coordination networks and frameworks as precursors of electrocatalysts for the hydrogen and oxygen evolution reactions. J Nanopart Res 20:146 Zhang P, Li Z, Zhang S, Shao G (2018b) Recent advances in effective reduction of graphene oxide for highly improved performance toward electrochemical energy storage. Energ Environ Mater 1:5–12 Zhao F, Kong W, Hu Z, Liu J, Zhao Y, Zhang B (2016) Tuning the performance of Pt–Ni alloy/reduced graphene oxide catalysts for 4-nitrophenol reduction. RSC Adv 6:79028–79036 Zhu CR, Gao D, Ding J, Chao D, Wang J (2018) TMD-based highly efficient electrocatalysts developed by combined computational and experimental approaches. Chem Soc Rev 47:4332–4356 Zou X, Liu Y, Li GD, Wu Y, Liu DP, Li W, Li HW, Wang D, Zhang Y, Zou X (2017) Ultrafast formation of amorphous bimetallic hydroxide films on 3D conductive sulfide nanoarrays for large-current-density oxygen evolution electrocatalysis. Adv Mater 29:1700404 Zou X, Wu Y, Liu Y, Liu D, Li W, Gu L, Liu H, Wang P, Sun L, Zhang Y (2018) In situ generation of bifunctional, efficient Fe-based catalysts from mackinawite iron sulfide for water splitting. Chem 4:1139–1152