Facile fabrication of Ag3VO4/attapulgite composites for highly efficient visible light-driven photodegradation towards organic dyes and tetracycline hydrochloride

Springer Science and Business Media LLC - Tập 19 Số 12 - 2017
Yuting Luo1, Jun Luo1, Gengli Duan1, Xiaoheng Liu1
1Key Laboratory of Education Ministry for Soft Chemistry and Functional Materials, Nanjing University of Science and Technology, Nanjing, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Bi Y, Ouyang S, Umezawa N, Cao J, Ye J (2011) Facet effect of single-crystalline Ag3PO4 sub-microcrystals on photocatalytic properties. J Am Chem Soc 133(17):6490–6492. https://doi.org/10.1021/ja2002132

Cao E, Bryant R, Williams DJA (1996) Electrochemical properties of Na–attapulgite. J Colloid Interf Sci 179(1):143–150. https://doi.org/10.1006/jcis.1996.0196

Cao JL, Shao GS, Wang Y, Liu Y, Yuan ZY (2008) CuO catalysts supported on attapulgite clay for low-temperature CO oxidation. Catal Commun 9(15):2555–2559. https://doi.org/10.1016/j.catcom.2008.07.016

Cao J, Luo B, Lin H, Xu B, Chen S (2012) Visible light photocatalytic activity enhancement and mechanism of AgBr/Ag3PO4 hybrids for degradation of methyl orange. J Hazard Mater 217–218:107–115. https://doi.org/10.1016/j.jhazmat.2012.03.002

Chang P-H, Li Z, Yu TL, Munkhbayer S, Kuo TH, Hung YC, Jean JS, Lin KH (2009) Sorptive removal of tetracycline from water by palygorskite. J Hazard Mater 165(1-3):148–155. https://doi.org/10.1016/j.jhazmat.2008.09.113

Chen LF, Liang HW, Lu Y, Cui CH, Yu SH (2011) Synthesis of an attapulgite clay@carbon nanocomposite adsorbent by a hydrothermal carbonization process and their application in the removal of toxic metal ions from water. Langmuir 27(14):8998–9004. https://doi.org/10.1021/la2017165

Chen W, Liu T-Y, Huang T, Liu X-H, Yang X-J (2016) Novel mesoporous P-doped graphitic carbon nitride nanosheets coupled with ZnIn2S4 nanosheets as efficient visible light driven heterostructures with remarkably enhanced photo-reduction activity. Nano 8(6):3711–3719. https://doi.org/10.1039/C5NR07695A

Chitpong N, Husson SM (2017) Polyacid functionalized cellulose nanofiber membranes for removal of heavy metals from impaired waters. J Membr Sci 523:418–429. https://doi.org/10.1016/j.memsci.2016.10.020

Deng Y, Tang L, Zeng G, Wang J, Zhou Y, Wang J, Tang J, Liu Y, Peng B, Chen F (2016) Facile fabrication of a direct Z-scheme Ag2CrO4/g-C3N4 photocatalyst with enhanced visible light photocatalytic activity. J Mol Catal A Chem 421:209–221. https://doi.org/10.1016/j.molcata.2016.05.024

Frost RL, Cash GA, Kloprogge JT (1998) ‘Rocky Mountain leather’, sepiolite and attapulgite—an infrared emission spectroscopic study. Vib Spectrosc 16(2):173–184. https://doi.org/10.1016/S0924-2031(98)00014-9

Gelderman K, Lee L, Donne SW (2007) Flat-band potential of a semiconductor: using the Mott–Schottky equation. J Chem Educ 84(4):685. https://doi.org/10.1021/ed084p685

He D, Sun Y, Xin L, Feng J (2014) Aqueous tetracycline degradation by non-thermal plasma combined with nano-TiO2. Chem Eng J 258:18–25. https://doi.org/10.1016/j.cej.2014.07.089

Hong Y, Jiang Y, Li C, Fan W, Yan X, Yan M, Shi W (2016) In-situ synthesis of direct solid-state Z-scheme V2O5/g-C3N4 heterojunctions with enhanced visible light efficiency in photocatalytic degradation of pollutants. Appl Catal B Environ 180:663–673. https://doi.org/10.1016/j.apcatb.2015.06.057

Hu X, Mohamood T, Ma W, Chen C, Zhao J (2006) Oxidative decomposition of rhodamine B dye in the presence of VO2 + and/or Pt(IV) under visible light irradiation: N-deethylation, chromophore cleavage, and mineralization. J Phys Chem B 110(51):26012–26018. https://doi.org/10.1021/jp063588q

Jin L, Chen D (2012) Enhancement in photovoltaic performance of phthalocyanine-sensitized solar cells by attapulgite nanoparticles. Electrochim Acta 72:40–45. https://doi.org/10.1016/j.electacta.2012.03.167

Jing L, Xu Y, Huang S, Xie M, He M, Xu H, Li H, Zhang Q (2016) Novel magnetic CoFe2O4/Ag/Ag3VO4 composites: highly efficient visible light photocatalytic and antibacterial activity. Appl Catal B Environ 199:11–22. https://doi.org/10.1016/j.apcatb.2016.05.049

Kiantazh F, Habibi-Yangjeh A (2015) Ag3VO4/ZnO nanocomposites with an n–n heterojunction as novel visible-light-driven photocatalysts with highly enhanced activity. Mater Sci Semicond Process 39:671–679. https://doi.org/10.1016/j.mssp.2015.06.011

Konta R, Kato H, Kobayashi H, Kudo A (2003) Photophysical properties and photocatalytic activities under visible light irradiation of silver vanadates. Phys Chem Chem Phys 5(14):3061. https://doi.org/10.1039/b300179b

Li Y, Jin R, Fang X, Yang Y, Yang M, Liu X, Xing Y, Song S (2016) In situ loading of Ag2WO4 on ultrathin g-C3N4 nanosheets with highly enhanced photocatalytic performance. J Hazard Mater 313:219–228. https://doi.org/10.1016/j.jhazmat.2016.04.011

Liqiang J, Yichun Q, Baiqi W, Shudan L, Baojiang J, Libin Y, Wei F, Honggang F, Jiazhong S (2006) Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity. Sol Energy Mater Sol Cells 90(12):1773–1787. https://doi.org/10.1016/j.solmat.2005.11.007

Liu Q, Yao X, Cheng H, Frost RL (2012) An infrared spectroscopic comparison of four Chinese palygorskites. Spectrochim Acta A Mol Biomol Spectrosc 96:784–789. https://doi.org/10.1016/j.saa.2012.07.025

Luo J, Duan G, Wang W, Luo Y, Liu X (2017) Size-controlled synthesis of palygorskite/Ag3PO4 nanocomposites with enhanced visible-light photocatalytic performance. Appl Clay Sci 143:273–278. https://doi.org/10.1016/j.clay.2017.04.004

Ma J, Zou J, Li L, Yao C, Zhang T, Li D (2013) Synthesis and characterization of Ag3PO4 immobilized in bentonite for the sunlight-driven degradation of Orange II. Appl Catal B Environ 134–135:1–6. https://doi.org/10.1016/j.apcatb.2012.12.032

Ma JF, Zhou J, Li LY, Yao C, Kong Y, Cui BY, Zhu RL, Li DL (2014) Nanocomposite of attapulgite-Ag3PO4 for Orange II photodegradation. Appl Catal B Environ 144:36–40. https://doi.org/10.1016/j.apcatb.2013.06.029

Murugesan S, Wijayasinghe A, Bergman B (2007) Preparation and characterization of CuI-doped silver borovanadate superionic system. Solid State Ionics 178(11-12):779–783. https://doi.org/10.1016/j.ssi.2007.02.025

Neelgund GM, Oki A (2011) Photocatalytic activity of CdS and Ag2S quantum dots deposited on poly(amidoamine) functionalized carbon nanotubes. Appl Catal B Environ 110:99–107. https://doi.org/10.1016/j.apcatb.2011.08.031

Ouyang S, Li Z, Ouyang Z, Yu T, Ye J, Zou Z (2008) Correlation of crystal structures, electronic structures, and photocatalytic properties in a series of ag-based oxides: AgAlO2, AgCrO2, and Ag2CrO4. J Phys Chem C 112(8):3134–3141. https://doi.org/10.1021/jp077127w

Pozio A, Masci A, Pasquali M (2016) Nickel-TiO2 nanotube anode for photo-electrolysers. Sol Energy 136:590–596. https://doi.org/10.1016/j.solener.2016.07.040

Ran R, McEvoy JG, Zhang Z (2016) Ag2O/Ag3VO4/Ag4V2O7 heterogeneous photocatalyst prepared by a facile hydrothermal synthesis with enhanced photocatalytic performance under visible light irradiation. Mater Res Bull 74:140–150. https://doi.org/10.1016/j.materresbull.2015.08.028

Reddy KR, Nakata K, Ochiai T, Murakami T, Tryk DA, Fujishima A (2010) Nanofibrous TiO2-core/conjugated polymer-sheath composites: synthesis, structural properties and photocatalytic activity. J Nanosci Nanotechnol 10(12):7951–7957. https://doi.org/10.1166/jnn.2010.3143

Reddy KR, Nakata K, Ochiai T, Murakami T, Tryk DA, Fujishima A (2011) Facile fabrication and photocatalytic application of ag nanoparticles-TiO2 nanofiber composites. J Nanosci Nanotechnol 11(4):3692–3695. https://doi.org/10.1166/jnn.2011.3805

Reddy KR, Hassan M, Gomes VG (2015) Hybrid nanostructures based on titanium dioxide for enhanced photocatalysis. Appl Catal A Gen 489:1–16. https://doi.org/10.1016/j.apcata.2014.10.001

Reddy KR, Karthik KV, Prasad SBB, Soni SK, Jeong HM, Raghu AV (2016) Enhanced photocatalytic activity of nanostructured titanium dioxide/polyaniline hybrid photocatalysts. Polyhedron 120:169–174. https://doi.org/10.1016/j.poly.2016.08.029

Sánchez del Río M, Boccaleri E, Milanesio M, Croce G, van Beek W, Tsiantos C, Chyssikos GD, Gionis V, Kacandes GH, Suárez M, García-Romero E (2009) A combined synchrotron powder diffraction and vibrational study of the thermal treatment of palygorskite–indigo to produce Maya blue. J Mater Sci 44(20):5524–5536. https://doi.org/10.1007/s10853-009-3772-5

Shan W, Hu Y, Bai Z, Zheng M, Wei C (2016) In situ preparation of g-C3N4/bismuth-based oxide nanocomposites with enhanced photocatalytic activity. Appl Catal B Environ 188:1–12. https://doi.org/10.1016/j.apcatb.2016.01.058

Shi Y, Yang Z, Wang B, An H, Chen Z, Cui H (2016) Adsorption and photocatalytic degradation of tetracycline hydrochloride using a palygorskite-supported Cu2O–TiO2 composite. Appl Clay Sci 119(Part 2):311–320. https://doi.org/10.1016/j.clay.2015.10.033

Showkat AM et al (2007) Analysis of heavy metal toxic ions by adsorption onto amino-functionalized ordered mesoporous silica, vol 28, 11. Korean Chemical Society, Seoul

Stathatos E, Papoulis D, Aggelopoulos CA, Panagiotaras D, Nikolopoulou A (2012) TiO2/palygorskite composite nanocrystalline films prepared by surfactant templating route: synergistic effect to the photocatalytic degradation of an azo-dye in water. J Hazard Mater 211–212:68–76. https://doi.org/10.1016/j.jhazmat.2011.11.055

Suárez M, García-Romero E (2006) FTIR spectroscopic study of palygorskite: influence of the composition of the octahedral sheet. Appl Clay Sci 31(1-2):154–163. https://doi.org/10.1016/j.clay.2005.10.005

Sun W, Qian C, He L, Ghuman KK, Wong APY, Jia J, Jelle AA, O’Brien PG, Reyes LM, Wood TE, Helmy AS, Mims CA, Singh CV, Ozin GA (2016) Heterogeneous reduction of carbon dioxide by hydride-terminated silicon nanocrystals. Nat Commun 7:12553. https://doi.org/10.1038/ncomms12553 http://www.nature.com/articles/ncomms12553#supplementary-information

Tang J, Mu B, Zong L, Zheng M, Wang A (2015) Fabrication of attapulgite/carbon composites from spent bleaching earth for the efficient adsorption of methylene blue. RSC Adv 5(48):38443–38451. https://doi.org/10.1039/C5RA02497H

Wang P, Huang B, Qin X, Zhang X, Dai Y, Wei J, Whangbo M-H (2008) Ag@AgCl: a highly efficient and stable photocatalyst active under visible light. Angew Chem Int Ed 47(41):7931–7933. https://doi.org/10.1002/anie.200802483

Wang J, Yang X, Chen J, Xian J, Meng S, Zheng Y, Shao Y, Li D (2014) Photocatalytic activity of novel Ag4V2O7 photocatalyst under visible light irradiation. J Am Ceram Soc 97(1):267–274. https://doi.org/10.1111/jace.12639

Wang P, Tang H, Ao Y, Wang C, Hou J, Qian J, Li Y (2016a) In-situ growth of Ag3VO4 nanoparticles onto BiOCl nanosheet to form a heterojunction photocatalyst with enhanced performance under visible light irradiation. J Alloys Compd 688(Part B):1–7. https://doi.org/10.1016/j.jallcom.2016.07.180

Wang Q, Hisatomi T, Jia Q, Tokudome H, Zhong M, Wang C, Pan Z, Takata T, Nakabayashi M, Shibata N, Li Y, Sharp ID, Kudo A, Yamada T, Domen K (2016) Scalable water splitting on particulate photocatalyst sheets with a solar-to-hydrogen energy conversion efficiency exceeding 1%. Nat Mater 15(6):611–615. https://doi.org/10.1038/nmat4589 . http://www.nature.com/nmat/journal/v15/n6/abs/nmat4589.html#supplementary-information

Wang X, Li T, Yu R, Yu H, Yu J (2016b) Highly efficient TiO2 single-crystal photocatalyst with spatially separated Ag and F- bi-cocatalysts: orientation transfer of photogenerated charges and their rapid interfacial reaction. J Mater Chem A 4(22):8682–8689. https://doi.org/10.1039/C6TA02039A

Wu J, Zhang H, Oturan N, Wang Y, Chen L, Oturan MA (2012) Application of response surface methodology to the removal of the antibiotic tetracycline by electrochemical process using carbon-felt cathode and DSA (Ti/RuO2–IrO2) anode. Chemosphere 87(6):614–620. https://doi.org/10.1016/j.chemosphere.2012.01.036

Xu H, Li H, Sun G, Xia J, Wu C, Ye Z, Zhang Q (2010) Photocatalytic activity of La2O3-modified silver vanadates catalyst for rhodamine B dye degradation under visible light irradiation. Chem Eng J 160(1):33–41. https://doi.org/10.1016/j.cej.2010.02.054

Xu J, Zhang J, Wang Q, Wang A (2011) Disaggregation of palygorskite crystal bundles via high-pressure homogenization. Appl Clay Sci 54(1):118–123. https://doi.org/10.1016/j.clay.2011.07.020

Yan W, Liu D, Tan D, Yuan P, Chen M (2012) FTIR spectroscopy study of the structure changes of palygorskite under heating. Spectrochim Acta A Mol Biomol Spectrosc 97:1052–1057. https://doi.org/10.1016/j.saa.2012.07.085

Yan M, Wu Y, Zhu F, Hua Y, Shi W (2016) The fabrication of a novel Ag3VO4/WO3 heterojunction with enhanced visible light efficiency in the photocatalytic degradation of TC. Phys Chem Chem Phys 18(4):3308–3315. https://doi.org/10.1039/C5CP05599G

Yang J, Li D, Wang X, Yang X, Lu L (2002) Rapid synthesis of nanocrystalline TiO2/SnO2 binary oxides and their photoinduced decomposition of methyl orange. J Solid State Chem 165(1):193–198. https://doi.org/10.1006/jssc.2001.9526

Zhang J, Chen A, Wang L, Li X’a, Huang W (2016a) Striving toward visible light photocatalytic water splitting based on natural silicate clay mineral: the interface modification of attapulgite at the atomic-molecular level. ACS Sustain Chem Eng 4(9):4601–4607. https://doi.org/10.1021/acssuschemeng.6b00716

Zhang G, Wang H, Guo S, Wang J, Liu J (2016b) Synthesis of Cu/TiO2/organo-attapulgite fiber nanocomposite and its photocatalytic activity for degradation of acetone in air. Appl Surf Sci 362:257–264. https://doi.org/10.1016/j.apsusc.2015.11.218