Facile fabrication and characterization of chitosan-based zinc oxide nanoparticles and evaluation of their antimicrobial and antibiofilm activity
Tóm tắt
The present investigation deals with the facile synthesis and characterization of chitosan (CTS)-based zinc oxide (ZnO) nanoparticles (NPs) and their antimicrobial activities against pathogenic microorganisms. ZnO–CTS NPs were synthesized through two different methods: nano spray drying and precipitation, using various organic compounds (citric acid, glycerol, starch and whey powder) as stabilizers. Both the synthesis methods were simple and were devoid of any chemical usage. The detailed characterization of the NPs was carried out using UV–Vis spectroscopy, dynamic light scattering particle size analysis, zeta potential measurements and scanning electron microscopy, which confirmed the fabrication of NPs with different shapes and sizes. Antimicrobial assay of synthesized ZnO–CTS NPs was carried out against different pathogenic microbial strains (Candida albicans, Micrococcus luteus and Staphylococcus aureus). The significant (p < 0.05) inhibition of growth was observed for both M. luteus and S. aureus with ZnO–CTS NPs (with a concentration ranging from 0.625 to 0.156 mg/ml) as compared to control treatment. ZnO–CTS NPs also showed significant biofilm inhibition activity (p < 0.05) against M. luteus and S. aureus. The study demonstrated the potential of ZnO–CTS NPs as antimicrobial and antibiofilm agents.
Tài liệu tham khảo
Wei, A., Sun, X.W., Wang, J.X., Lei, Y., Cai, X.P., Li, C.M., Dong, Z.L., Huang, W.: Enzymatic glucose biosensor based on ZnO nano rods grown by hydrothermal decomposition. Appl. Phys. Lett. 89(12), 123902 (2006)
Wang, J.X., Sun, X.W., Wei, A., Lei, Y., Cai, X.P., Li, C.M., Dong, Z.L.: Zinc oxide nano comb biosensor for glucose detection. Appl. Phys. Lett. 88(23), 233106–233108 (2006)
Singh, S.P., Arya, S.K., Pandey, P., Malhotra, B.D., Saha, S., Sreenivas, K., Gupta, V.: Cholesterol biosensor based on sputtered zinc oxide nano porous thin film. Appl. Phys. Lett. 91(1–3), 063901 (2007)
Cheng, J.P., Zhang, X.B., Tao, X.Y., Lu, H.M., Luo, Z.Q., Liu, F.: Fine-tuning the synthesis of ZnO nanostructures by an alcohol thermal process. J. Phys. Chem. B 110(21), 10348–10353 (2006)
Wahab, R., Ansari, S.G., Kim, Y.S., Song, M., Shin, H.S.: The role of pH variation on the growth of zinc oxide nanostructures. Appl. Surf. Sci. 255(9), 4891–4896 (2009)
Zhang, J., Sun, L., Yin, J., Su, H., Liao, C., Yan, C.: Control of ZnO morphology via a simple solution route. Chem. Mater. 14(10), 4172–4177 (2002)
Ayudhya, S.K.N., Tonto, P., Mekasuwandumrong, O., Pavarajarn, V., Praserthdam, P.: Solvothermal synthesis of ZnO with various aspect ratios using organic solvents. Cryst. Growth Des. 6(11), 2446–2450 (2006)
Bitenc, M., Podbrscek, P., Orel, Z.C., Cleveland, M.A., Paramo, J.A., Peters, R.M., Strzhemechny, Y.M.: Correlation between morphology and defect luminescence in precipitated ZnO nanorod powders. Cryst. Growth Des. 9(2), 997–1001 (2009)
Ozgur, U., Alivov, Y.I., Liu, C., Teke, A., Reshchikov, M.A., Dogan, S., Avrutin, V., Cho, S.J., Morkoc, H.: A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98(4), 041301–041303 (2005)
Kim, J.Y., Osterloh, F.E.: ZnO–CdSe nanoparticles clusters as directional photo emitters with tunable wavelength. J. Am. Chem. Soc. 127(29), 10152–10153 (2005)
Hubbard, N.B., Culpepper, M.L., Howell, L.L.: Actuators for micro positioners and nano positioners. Appl. Mech. Rev. 59(1–6), 324–334 (2006)
Lee, H.J., Yeo, S.Y., Jeong, S.H.: Antibacterial effect of nano sized silver colloidal solution on textile fabrics. J. Mater. Sci. 38(10), 2199–2204 (2003)
Wang, L., Muhammed, M.: Synthesis of zinc oxide nanoparticles with controlled morphology. J. Mater. Chem. 9(11), 2871–2878 (1999)
Xu, H.Y., Wang, H., Zhang, Y.C.: Hydrothermal synthesis of zinc oxide powders with controllable morphology. Ceramics Inter 30(1), 93–97 (2004)
Tani, T., Mdler, L., Pratsinis, S.E.: Homogeneous ZnO nanoparticles by flame spray pyrolysis. J Nanoparticle Res 4(4), 337–343 (2002)
Li, L.H., Deng, J.C., Deng, H.R., Liu, Z.L., Xin, L.: Synthesis and characterization of chitosan/ZnO nanoparticle composite membranes. Carbohyd Res 345(8), 994–998 (2010)
Agnihotri, S.A., Mallikarjuna, N.N., Aminabhavi, T.M.: Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J. Controlled Release 100(1), 5–28 (2004)
Kim, S.K., Rajapakse, N.: Enzymatic production and biological activities of chitosan oligosaccharides (COS): a review. Carbohyd Polym 62(4), 357–368 (2005)
Muzzarelli, R.A.A., Sipos, L.: Chitosan for the collection from seawater of naturally occurring zinc, cadmium, lead and copper. Talanta 18(9), 853–858 (1971)
Posthumus, W., Magusin, P.C.M., Zijp, J.C.M.B., Tinnemans, A.H.A., Linde, R.: Surface modification of oxidic nanoparticles using 3-methacryloxypropyl-trimethoxysilane. J. Coll. Interf. Sci. 269, 109–116 (2004)
Tang, E., Cheng, G., Ma, X., Pang, X., Zhao, Q.: Surface modification of ZnO nanoparticles by PMAA and its dispersion in aqueous system. Appl. Surf. Sci. 252(14), 5227–5232 (2006)
Ryan, K.J., Ray, C.G. (ed.): Sherris Medical Microbiology (4th ed). McGraw Hill, New York, ISBN 0-8385-8529-9 (2004)
Bowersox, J.: Experimental staph vaccine broadly protective in animal studies. NIH. Archived from the original on 5 May 2007(1999)
Limban, C., Marutescu, L., Chifiriuc, M.C.: Synthesis, spectroscopic properties and antipathogenic activity of new thiourea derivatives. Molecules 16(9), 7593–7607 (2011)
Olar, R., Badea, M., Marinescu, D., Chifiriuc, M.C., Bleotu, C., Grecu, M.N., Iorgulescu, E.M., Bucur, M., Lazar, A., Finaru, A.: Prospects for new antimicrobials based on N,N dimethyl biguanide complexes as effective agents on both planktonic and adhered microbial strains. Eur. J. Med. Chem. 45, 2868–2875 (2010)
Pesika, N.S., Stebe, K.J., Searson, P.C.: Determination of the particle size distribution of quantum nano crystals from absorbance spectra. Adv. Matter. 15(15), 1289–1296 (2003)
Ji, X., Song, X., Li, J., Bai, Y., Yang, W., Peng, X.: Size control of gold nano crystals in citrate reduction: the third role of citrate. J. Am. Chem. Soc. 129(45), 13939–13948 (2007)
Jiang, X.C., Chen, C.Y., Chen, W.M., Yu, A.B.: Role of citric acid in the formation of silver nano plates through a synergistic reduction approach. Langmuir 26(6), 4400–4408 (2010)
Jin, R., Cao, Y., Metraux, G.S., Schatz, G.C., Mirkin, C.A.: Controlling anistropic nanoparticle growth through plasmon excitation. Nature 425, 487–490 (2003)
Jin, R., Cao, Y., Mirkin, C.A., Kelly, K.L., Schatz, G.C., Zheng, J.G.: Photo induced conversion of silver nanospheres to nanoprisms. Sci 294(5548), 1901–1903 (2001)
Nair, S., Sasidharan, A., Divya Rani, V.V., Menon, D., Nair, S., Manzoor, K., Raina, S.: Role of size scale of ZnO nanoparticles and microparticles on toxicity toward bacteria and osteoblast cancer cells. J. Mater. Sci. Mater. Med. 20(S1), 235–241 (2009)
Adams, L.K., Lyon, D.Y., Alvarez, P.J.J.: Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Res. 40(19), 3527–3532 (2006)
Brayner, R., Ferrari-Iliou, R., Brivois, N., Djediat, S., Benedetti, M.F., Fiévet, F.: Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett. 6(4), 866–870 (2006)
Colon, G., Ward, B.C., Webster, T.J.: Increased osteoblast and decreased staphylococcus epidermidis functions on nanophase ZnO and TiO2. J. Biomed. Mater. Res. A78, 595–604 (2006)
Jeng, H.A., Swanson, J.: Toxicity of metal oxide nanoparticles in mammalian cells. J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng. 41(12), 2699–2711 (2006)
Yang, Z., Xie, C.: Zn2+ release from zinc and zinc oxide particles in simulated uterine solution. Coll. Surf. B Biointerf. 47(2), 140–145 (2006)
Zhang, L., Jiang, Y., Ding, Y., Povey, M., York, D.: Investigation into the antibacterial behavior of suspensions of ZnO nanoparticles (ZnO nano fluids). J. Nano. Part. Res. 9(3), 479–489 (2007)
Reddy, K.M., Feris, K., Bell, J., Wingett, D.G., Hanley, C., Punnoose, A.: Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Appl. Phys. Lett. 90(213902), 2139021–2139023 (2007)
Yamamoto, O.: Influence of particle size on the antibacterial activity of zinc oxide. Int. J. Inorg. Mater. 3(7), 643–646 (2001)
Sawai, J., Shouji, S., Igarashi, H., Hashimoto, A., Kokugan, T., Shimizu, M., Kojima, H.: Hydrogen peroxide as an antibacterial factor in zinc oxide powder slurry. J. Ferment. Bioeng. 86(5), 521–522 (1998)
Donlan, R.M., Costerton, J.W.: Biofilms: survival mechanisms of clinically relevant microorganisms. Clin. Microbiol. Rev. 15, 167–193 (2002)