Facile construction of fascinating trimetallic PdAuAg nanocages with exceptional ethylene glycol and glycerol oxidation activity

Nanoscale - Tập 9 Số 43 - Trang 17004-17012
Hui Xu1,2,3,4,5, Jin Wang1,2,3,4,5, Bo Yan1,2,3,4,5, Shumin Li1,2,3,4,5, Caiqin Wang6,7,8,9, Yukihide Shiraishi10,11,12, Ping Yang1,2,3,4,5, Yukou Du1,2,3,4,5
1Chemical Engineering and Materials Science
2College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
3PR China
4Soochow University
5Suzhou 215123
6Canada
7Chemistry Department, University of Toronto, Toronto, M5S3H4, RP, Canada
8Toronto M5S3H4
9University of Toronto
10Japan
11Tokyo University of Science Yamaguchi, Sanyo-Onoda-shi, Yamaguchi 756-0884, Japan
12Yamaguchi 756-0884

Tóm tắt

A facile method combining seed mediated and galvanic replacement allows the preparation of fascinating trimetallic Pd–Au–Ag nanocage catalysts, which exhibit excellent electrocatalytic performances towards EGOR and GOR.

Từ khóa


Tài liệu tham khảo

Hong, 2015, Energy Environ. Sci., 8, 2910, 10.1039/C5EE01988E

Zalineeva, 2014, J. Am. Chem. Soc., 136, 3937, 10.1021/ja412429f

Chen, 2016, Angew. Chem., Int. Ed., 55, 9021, 10.1002/anie.201602592

Niu, 2015, Angew. Chem., Int. Ed., 54, 8271, 10.1002/anie.201503148

Du, 2014, J. Am. Chem. Soc., 136, 10862, 10.1021/ja505456w

Chen, 2017, J. Mater. Chem. A, 5, 4421, 10.1039/C6TA10476B

Cai, 2016, ACS Appl. Mater. Interfaces, 8, 12792, 10.1021/acsami.6b02099

Fu, 2016, Nano Res., 9, 755, 10.1007/s12274-015-0954-0

Jing, 2016, J. Mater. Chem. A, 4, 7950, 10.1039/C5TA10046A

Wang, 2013, J. Am. Chem. Soc., 135, 16762, 10.1021/ja407773x

Wang, 2010, J. Am. Chem. Soc., 132, 13636, 10.1021/ja105640p

Ataee-Esfahani, 2010, Chem. Mater., 22, 6310, 10.1021/cm102074w

Zhu, 2012, Adv. Mater., 24, 2326, 10.1002/adma.201104951

Qiu, 2016, J. Power Sources, 302, 195, 10.1016/j.jpowsour.2015.10.065

Kannan, 2014, Chem. Commun., 50, 14623, 10.1039/C4CC06879C

Lu, 2012, ACS Catal., 2, 84, 10.1021/cs200538g

Kannan, 2015, RSC Adv., 5, 35993, 10.1039/C5RA04226G

Xu, 2017, J. Mater. Chem. A, 5, 15932, 10.1039/C7TA04598K

Kannan, 2015, Int. J. Hydrogen Energy, 40, 11960, 10.1016/j.ijhydene.2015.06.032

Liu, 2016, Nano Res., 9, 1590, 10.1007/s12274-016-1053-6

Guo, 2013, Nanoscale, 5, 12582, 10.1039/c3nr04304e

Han, 2016, ACS Appl. Mater. Interfaces, 8, 30948, 10.1021/acsami.6b10343

Xu, 2017, Electrochim. Acta, 245, 227, 10.1016/j.electacta.2017.05.146

Xu, 2017, Nanoscale, 9, 12996, 10.1039/C7NR04409G

Dutta, 2016, J. Mater. Chem. A, 4, 3765, 10.1039/C6TA00379F

Haldar, 2014, ACS Appl. Mater. Interfaces, 6, 21946, 10.1021/am507391d

Huang, 2015, Small, 11, 5214, 10.1002/smll.201501220

Bu, 2016, Nat. Commun., 7, 11850, 10.1038/ncomms11850

Xu, 2017, J. Colloid Interface Sci., 505, 1, 10.1016/j.jcis.2017.05.067

Xu, 2017, J. Alloys Compd., 723, 36, 10.1016/j.jallcom.2017.06.230

Hong, 2015, Nanoscale, 7, 9985, 10.1039/C5NR01679G

Zhang, 2016, Chem. Soc. Rev., 45, 3916, 10.1039/C5CS00958H

Qazzazie, 2017, Nanoscale, 9, 6436, 10.1039/C7NR01391D

Jiang, 2015, ACS Appl. Mater. Interfaces, 7, 15061, 10.1021/acsami.5b04391

Xu, 2017, Int. J. Hydrogen Energy, 42, 11229, 10.1016/j.ijhydene.2017.03.023

Becknell, 2015, J. Am. Chem. Soc., 137, 15817, 10.1021/jacs.5b09639

Chen, 2014, Science, 343, 1339, 10.1126/science.1249061

Chew, 2015, Chem. Mater., 27, 7827, 10.1021/acs.chemmater.5b03870

Hong, 2012, J. Am. Chem. Soc., 134, 18165, 10.1021/ja3076132

Wu, 2014, J. Am. Chem. Soc., 136, 11594, 10.1021/ja5058532

Ye, 2015, Nanoscale, 7, 9558, 10.1039/C4NR06917J

Bin, 2016, Chem. – Eur. J., 22, 16642, 10.1002/chem.201601544

Zhang, 2016, Chem. Mater., 28, 4447, 10.1021/acs.chemmater.6b01642

Zhang, 2016, Nano Lett., 16, 5037, 10.1021/acs.nanolett.6b01825

Zhu, 2015, Nano Res., 9, 149, 10.1007/s12274-015-0927-3

Wang, 2016, Angew. Chem., Int. Ed., 55, 12859, 10.1002/anie.201606290

Xu, 2017, J. Power Sources, 356, 27, 10.1016/j.jpowsour.2017.04.070

Benipal, 2017, Appl. Catal., B, 210, 121, 10.1016/j.apcatb.2017.02.082

Ataee-Esfahani, 2013, Angew. Chem., Int. Ed., 52, 13611, 10.1002/anie.201307126

Chang, 2016, J. Mater. Chem. A, 4, 18607, 10.1039/C6TA07896F

Wang, 2016, J. Mater. Chem. A, 4, 17828, 10.1039/C6TA07519C

Lv, 2015, Nanoscale, 7, 5699, 10.1039/C5NR00174A

Zhang, 2015, Nanoscale, 7, 12445, 10.1039/C5NR02713F

Jana, 2016, J. Power Sources, 301, 160, 10.1016/j.jpowsour.2015.09.114

Hu, 2016, Appl. Catal., B, 180, 758, 10.1016/j.apcatb.2015.07.023

An, 2016, J. Power Sources, 329, 484, 10.1016/j.jpowsour.2016.08.105

Zhang, 2017, Adv. Mater., 29, 10.1002/adma.201603774

Xu, 2017, Colloids Surf., A, 522, 335, 10.1016/j.colsurfa.2017.03.015

Fu, 2015, ACS Appl. Mater. Interfaces, 7, 13842, 10.1021/acsami.5b01963

Malgras, 2016, Adv. Mater., 28, 993, 10.1002/adma.201502593

Li, 2016, ACS Appl. Mater. Interfaces, 8, 23920, 10.1021/acsami.6b07309

Zhou, 2017, Adv. Mater., 29, 10.1002/adma.201604080

Massa, 2017, Appl. Catal., B, 203, 270, 10.1016/j.apcatb.2016.10.025

Ali Shah, 2017, Electrochim. Acta, 224, 468, 10.1016/j.electacta.2016.12.085

Luo, 2016, ACS Nano, 10.1021/acsnano.6b04458

Shi, 2016, ACS Appl. Mater. Interfaces, 8, 4739, 10.1021/acsami.5b12407

Zhang, 2017, ACS Appl. Mater. Interfaces, 9, 16635, 10.1021/acsami.7b01874

Hsia, 2016, Chem. Mater., 28, 3073, 10.1021/acs.chemmater.6b00377