Facile biosynthesis of Ag–ZnO nanocomposites using Launaea cornuta leaf extract and their antimicrobial activity
Tóm tắt
Từ khóa
Tài liệu tham khảo
Aritonang HF, Koleangan H, Wuntu AD. Synthesis of silver nanoparticles using aqueous extract of medicinal plants’ (Impatiens balsamina and Lantana camara) fresh leaves and analysis of antimicrobial activity. Int J Microbiol. 2019;10:1–8. https://doi.org/10.1155/2019/8642303.
Sivagnanam SP, Getachew AT, Choi JH. Green synthesis of silver nanoparticles from deoiled brown algal extract via Box–Behnken based design and their antimicrobial and sensing properties. Green Process Synth. 2017;6:147–60. https://doi.org/10.1515/gps-2016-0052.
Gurunathan S, Kalishwaralal K, Vaidyanathan R, Venkataraman D, Pandian SRK, Muniyandi J, et al. Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli. Colloids Surf B Biointerfaces. 2009;74:328–35. https://doi.org/10.1016/j.colsurfb.2009.07.048.
Khodashenas B, Ghorbani HR. Synthesis of silver nanoparticles with different shapes. Arab J Chem. 2019;12:1823–38. https://doi.org/10.1016/j.arabjc.2014.12.014.
Ratan ZA, Haidere MF, Nurunnabi M, Shahriar SM, Ahammad AJS, Shim YY, et al. Green chemistry synthesis of silver nanoparticles and their potential anticancer effects. Cancers (Basel). 2020;12:855–80. https://doi.org/10.3390/cancers12040855.
Panchal P, Paul DR, Sharma A, Choudhary P, Meena P, Nehra SP. Biogenic mediated Ag/ZnO nanocomposites for photocatalytic and antibacterial activities towards disinfection of water. J Colloid Interface Sci. 2020;563:370–80. https://doi.org/10.1016/j.jcis.2019.12.079.
Dawadi S, Katuwal S, Gupta A, Lamichhane U, Thapa R, Jaisi S, et al. Current research on silver nanoparticles: synthesis, characterization, and applications. J Nanomater. 2021. https://doi.org/10.1155/2021/6687290.
Rajeshkumar S, Yadav K, Sridharan M, Roopan SM. Nano silver: an overview of shape, size-controlled synthesis and their antibacterial property. High Energy Chem. 2023;57:205–16. https://doi.org/10.1134/S001814392303013X.
Roberson M, Rangari V, Jeelani S, Samuel T, Yates C. Synthesis and characterization silver, zinc oxide and hybrid silver/zinc oxide nanoparticles for antimicrobial applications nano. Life. 2014;04:1440003. https://doi.org/10.1142/s1793984414400030.
Gurgur E, Oluyamo SS, Omotunde AO, Adetuyi OI. Green synthesis of zinc oxide nanoparticles and zinc oxide—silver, zinc oxide–copper nanocomposites using Bridelia ferruginea as biotemplate. SN Appl Sci. 2020;2:1–12. https://doi.org/10.1007/s42452-020-2269-3.
Alam F, Balani K. Role of silver/zinc oxide in affecting de-adhesion strength of Staphylococcus aureus on polymer biocomposites. Mater Sci Eng C. 2017;75:1106–14. https://doi.org/10.1016/j.msec.2017.02.131.
Lee J. Silver nanoparticles synthesized from Adenium obesum leaf extract induced DNA damage, apoptosis and autophagy via generation of reactive oxygen species. Colloids Surf B Biointerfaces. 2016;141:158–69. https://doi.org/10.1016/j.colsurfb.2016.01.027.
Kumar TP, Triveni RM, Sangeetha P, Sakthivel P, Revathi SK, Kumar AS, et al. Highly efficient performance of activated carbon impregnated with Ag, ZnO and Ag/ZnO nanoparticles as antimicrobial materials. In: AIChE annual meeting, conference proceedings, vol. 2019–November, American Institute of Chemical Engineers. 2015;130:108034–43. https://doi.org/10.1039/x0xx00000x
Pirtarighat S, Ghannadnia M, Baghshahi S. Green synthesis of silver nanoparticles using the plant extract of Salvia spinosa grown in vitro and their antibacterial activity assessment. J Nanostruct Chem. 2019;9:1–9. https://doi.org/10.1007/s40097-018-0291-4.
Jomehzadeh N, Koolivand Z, Dahdouh E, Akbari A, Zahedi A. Investigating in-vitro antimicrobial activity, biosynthesis, and characterization of silver nanoparticles, zinc oxide nanoparticles, and silver-zinc oxide nanocomposites using Pistacia atlantica Resin. Mater Today Commun. 2021;27:102457. https://doi.org/10.1016/j.mtcomm.2021.102457.
Babu AT, Antony R. Green synthesis of silver doped nano metal oxides of zinc & copper for antibacterial properties, adsorption, catalytic hydrogenation & photodegradation of aromatics. J Environ Chem Eng. 2019;7:102840–79. https://doi.org/10.1016/j.jece.2018.102840.
Patil SS, Mali MG, Tamboli MS, Patil DR, Kulkarni MV, Yoon H, et al. Green approach for hierarchical nanostructured Ag–ZnO and their photocatalytic performance under sunlight. Catal Today. 2016;260:126–34. https://doi.org/10.1016/j.cattod.2015.06.004.
Shreema K, Mathammal R, Kalaiselvi V, Vijayakumar S, Selvakumar K, Senthil K. Green synthesis of silver doped zinc oxide nanoparticles using fresh leaf extract Morinda citrifoliaand its antioxidant potential. Mater Today Proc. 2021;47:2126–31. https://doi.org/10.1016/j.matpr.2021.04.627.
Rajeshkumar S, Nandhini NT, Manjunath K, Sivaperumal P, Krishna Prasad G, Alotaibi SS, et al. Environment friendly synthesis copper oxide nanoparticles and its antioxidant, antibacterial activities using Seaweed (Sargassum longifolium) extract. J Mol Struct. 2021. https://doi.org/10.1016/j.molstruc.2021.130724.
Roopan SM, Khan FRN. ZnO nanorods catalyzed N-alkylation of piperidin-4-one, 4(3H)-pyrimidone, and ethyl 6-chloro-1,2-dihydro-2-oxo-4-phenylquinoline-3-carboxylate. Chem Pap. 2010;64:678–82. https://doi.org/10.2478/s11696-010-0045-3.
Surendra TV, Roopan SM, Al-Dhabi NA, Arasu MV, Sarkar G, Suthindhiran K. Vegetable peel waste for the production of ZnO nanoparticles and its toxicological efficiency, antifungal, hemolytic, and antibacterial activities. Nanoscale Res Lett. 2016. https://doi.org/10.1186/s11671-016-1750-9.
Madhumitha G, Elango G, Roopan SM. Biotechnological aspects of ZnO nanoparticles: overview on synthesis and its applications. Appl Microbiol Biotechnol. 2016;100:571–81. https://doi.org/10.1007/s00253-015-7108-x.
Saha R, Subramani K, Petchi Muthu Raju SAK, Rangaraj S, Venkatachalam R. Psidium guajava leaf extract-mediated synthesis of ZnO nanoparticles under different processing parameters for hydrophobic and antibacterial finishing over cotton fabrics. Prog Org Coat. 2018;124:80–91. https://doi.org/10.1016/j.porgcoat.2018.08.004.
Moradi M, Haghighi M, Allahyari S. Precipitation dispersion of Ag–ZnO nanocatalyst over functionalized multiwall carbon nanotube used in degradation of acid orange from wastewater. Process Saf Environ Prot. 2017;107:414–27. https://doi.org/10.1016/j.psep.2017.03.010.
Mtavangu SG, Machunda RL, van der Bruggen B, Njau KN. In situ facile green synthesis of Ag–ZnO nanocomposites using Tetradenia riperia leaf extract and its antimicrobial efficacy on water disinfection. Sci Rep. 2022;12:15359–72. https://doi.org/10.1038/s41598-022-19403-1.
Dias HB, Bernardi MIB, Marangoni VS, de Abreu Bernardi AC, de Souza Rastelli AN, Hernandes AC. Synthesis, characterization and application of Ag doped ZnO nanoparticles in a composite resin. Mater Sci Eng C. 2019;96:391–401. https://doi.org/10.1016/j.msec.2018.10.063.
Hasell T, Yang J, Wang W, Brown PD, Howdle SM. A facile synthetic route to aqueous dispersions of silver nanoparticles. Mater Lett. 2007;61:4906–10. https://doi.org/10.1016/j.matlet.2007.03.072.
Sharma VK, Yngard RA, Lin Y. Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interface Sci. 2009;145:83–96. https://doi.org/10.1016/j.cis.2008.09.002.
Akintelu SA, Folorunso AS. A review on green synthesis of zinc oxide nanoparticles using plant extracts and its biomedical applications. Bionanoscience. 2020;10:848–63. https://doi.org/10.1007/s12668-020-00774-6.
Zeghoud S, Hemmami H, Ben Seghir B, Ben Amor I, Kouadri I, Rebiai A, et al. A review on biogenic green synthesis of ZnO nanoparticles by plant biomass and their applications. Mater Today Commun. 2022;33:104747–56. https://doi.org/10.1016/j.mtcomm.2022.104747.
Krasner SW, Weinberg HS, Richardson SD, Pastor SJ, Chinn R, Sclimenti MJ, et al. Occurrence of a new generation of disinfection byproducts. Environ Sci Technol. 2006;40:7175–85. https://doi.org/10.1021/es060353j.
Zhao Y, Anichina J, Lu X, Bull RJ, Krasner SW, Hrudey SE, et al. Occurrence and formation of chloro- and bromo-benzoquinones during drinking water disinfection. Water Res. 2012;46:4351–60. https://doi.org/10.1016/j.watres.2012.05.032.
Masum MI, Siddiqa MM, Ali KA, Zhang Y, Abdallah Y, Ibrahim E, et al. Biogenic synthesis of silver nanoparticles using Phyllanthus emblicafruit extract and its inhibitory action against the pathogen acidovorax oryzaestrain RS-2 of rice bacterial brown stripe. Front Microbiol. 2019;10:820–37. https://doi.org/10.3389/fmicb.2019.00820.
Priya, Naveen, Kaur K, Sidhu AK. Green synthesis: an eco-friendly route for the synthesis of iron oxide nanoparticles. Front Nanotechnol. 2021;3:655062–77. https://doi.org/10.3389/fnano.2021.655062.
Jadoun S, Arif R, Jangid NK, Meena RK. Green synthesis of nanoparticles using plant extracts: a review. Environ Chem Lett. 2021;19:355–74. https://doi.org/10.1007/s10311-020-01074-x.
Bala N, Saha S, Chakraborty M, Maiti M, Das S, Basu R, et al. Green synthesis of zinc oxide nanoparticles using Hibiscus subdariffa leaf extract: effect of temperature on synthesis, anti-bacterial activity and anti-diabetic activity. RSC Adv. 2015;5:4993–5003. https://doi.org/10.1039/c4ra12784f.
Kharissova O, Dias HVR, Kharisov BI, Pérez BO, Pérez VMJ. The greener synthesis of nanoparticles. Trends Biotechnol. 2013;31:240–8. https://doi.org/10.1016/j.tibtech.2013.01.003.
Gour A, Jain NK. Advances in green synthesis of nanoparticles. Artif Cells Nanomed Biotechnol. 2019;47:844–51. https://doi.org/10.1080/21691401.2019.1577878.
Fayaz H, Karthik K, Christiyan KGJ, Kumar MA, Sivakumar A, Kaliappan S, et al. An investigation on the activation energy and thermal degradation of biocomposites of Jute/Bagasse/Coir/nano TiO2/epoxy-reinforced polyaramid fibers. J Nanomater. 2022. https://doi.org/10.1155/2022/3758212.
Karthik K, Rajamani D, Venkatesan EP, Shajahan MI, Rajhi AA, Aabid A, et al. Experimental investigation of the mechanical properties of carbon/basalt/SiC nanoparticle/polyester hybrid composite materials. Crystals (Basel). 2023. https://doi.org/10.3390/cryst13030415.
Khalil MMH, Ismail EH, El-Baghdady KZ, Mohamed D. Green synthesis of silver nanoparticles using olive leaf extract and its antibacterial activity. Arab J Chem. 2014;7:1131–9. https://doi.org/10.1016/j.arabjc.2013.04.007.
Mortezagholi B, Movahed E, Fathi A, Soleimani M, Forutan Mirhosseini A, Zeini N, et al. Plant-mediated synthesis of silver-doped zinc oxide nanoparticles and evaluation of their antimicrobial activity against bacteria cause tooth decay. Microsc Res Tech. 2022;85:3553–64. https://doi.org/10.1002/jemt.24207.
Mohamad NAN, Arham NA, Jai J, Hadi A. Plant extract as reducing agent in synthesis of metallic nanoparticles: a review. Adv Mat Res. 2014;832:350–5. https://doi.org/10.4028/www.scientific.net/AMR.832.350.
Kuppusamy P, Yusoff MM, Maniam GP, Govindan N. Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications: an updated report. Saudi Pharm J. 2016;24:473–84. https://doi.org/10.1016/j.jsps.2014.11.013.
Ramesh V, Karthik K, Cep R, Elangovan M. Influence of stacking sequence on mechanical properties of basalt/ramie biodegradable hybrid polymer composites. Polymers (Basel). 2023. https://doi.org/10.3390/polym15040985.
Hussain I, Singh NB, Singh A, Singh H, Singh SC. Green synthesis of nanoparticles and its potential application. Biotechnol Lett. 2016;38:545–60. https://doi.org/10.1007/s10529-015-2026-7.
Guzmán MG, Dille J, Godet S. Synthesis of silver nanoparticles by chemical reduction method and their antibacterial activity. Int J Chem Biomol Eng. 2009;2:104–7.
Yong J, Beom SÆ, Kim S. Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess Biosyst Eng. 2009;32:79–84. https://doi.org/10.1007/s00449-008-0224-6.
Ahmad S, Munir S, Zeb N, Ullah A, Khan B, Ali J, et al. Green nanotechnology: a review on green synthesis of silver nanoparticles—an ecofriendly approach. Int J Nanomed. 2019;14:5087–107. https://doi.org/10.2147/IJN.S200254.
Fayaz MA, Balaji K, Kalaichelvan PT, Venkatesan R. Fungal based synthesis of silver nanoparticles: an effect of temperature on the size of particles. Colloids Surf B Biointerfaces. 2009;74:123–6. https://doi.org/10.1016/j.colsurfb.2009.07.002.
Indriyani A, Yulizar Y, Tri Yunarti R, Oky Bagus Apriandanu D, Marcony Surya R. One-pot green fabrication of BiFeO3 nanoparticles via Abelmoschus esculentus L. leaves extracts for photocatalytic dye degradation. Appl Surf Sci. 2021;563:150113–25. https://doi.org/10.1016/j.apsusc.2021.150113.
Surya MR, Mauliddiyah S, Apriandanu DOB, Sudirman, Yulizar Y. SmMnO3-decorated ZnO in a hexane-water interface for enhancing visible light-driven photocatalytic degradation of malachite green. Chemosphere. 2022;304:135125. https://doi.org/10.1016/j.chemosphere.2022.135125.
Balogun ST, Stephenson C, Akanmu AO, Gamache S, Jibrin J. Antipseudomonal activity of aqueous and methanolic leaf extracts of Lactuca serriola Linn. (Astereceae). J Chem Chem Eng. 2017;8:157–62.
Awan AF, Akhtar MS, Anjum I, Mushtaq MN, Almas F, Mannan A, et al. Anti-oxidant and hepatoprotective effects of Lactuca serriola and its phytochemical screening by HPLC and FTIR analysis. Pak J Pharm Sci. 2020;33:2823–30. https://doi.org/10.36721/PJPS.2020.33.6.SUP.2823-2830.1.
Muriira Karau G, Nyagah E, Njagi M, King’ori Machocho A, Koech LC, Wangai LN, et al. Profiling of the chemical compounds in ethyl acetate extracts of Launaea cornuta asteraceae by GC–MS. Int J Pharmacogn. 2014;1:296–300. https://doi.org/10.13040/IJPSR.0975-8232.IJP.1(5).296-00.
Akimat EK, Omwenga GI, Moriasi GA, Ngugi MP. Antioxidant, anti-inflammatory, acute oral toxicity, and qualitative phytochemistry of the aqueous root extract of Launaea cornuta (Hochst. Ex. Oliv. & Hiern.). J Evid Based Integr Med. 2021. https://doi.org/10.1177/2515690X211064585.
Misonge JO, Kinyanjui JG, Kingori WM, Mwalukumbi JM. Phytochemical screening and cytotoxicity evaluation of Launaea cornuta H. (Asteraceae) using brine shrimp. Merit Res J Med Med Sci. 2015;3:116–20.
Roopan SM, Mathew RS, Mahesh SS, Titus D, Aggarwal K, Bhatia N, et al. Environmental friendly synthesis of zinc oxide nanoparticles and estimation of its larvicidal activity against Aedes aegypti. Int J Environ Sci Technol. 2019;16:8053–60. https://doi.org/10.1007/s13762-018-2175-z.
Ashraf H, Anjum T, Riaz S, Naseem S. Microwave-assisted green synthesis and characterization of silver nanoparticles using Melia azedarach for the management of fusarium wilt in tomato. Front Microbiol. 2020;11:238–59. https://doi.org/10.3389/fmicb.2020.00238.
Mehta BK, Chhajlani M, Shrivastava BD. Green synthesis of silver nanoparticles and their characterization by XRD. J Phys Conf Ser. 2017;836:012050–4. https://doi.org/10.1088/1742-6596/836/1/012050.
Marimuthu T, Anandhan N, Mahalingam T, Thangamuthu R, Mummoorthi M. Effect of P. murex on the properties of spin coated ZnO thin films for dye sensitized solar cell applications. J Mater Sci Mater Electron. 2015;26:7577–87. https://doi.org/10.1007/s10854-015-3394-4.
Ifijen IH, Maliki M, Anegbe B. Synthesis, photocatalytic degradation and antibacterial properties of selenium or silver doped zinc oxide nanoparticles: a detailed review. OpenNano. 2022;8:100082–106. https://doi.org/10.1016/j.onano.2022.100082.
Liu Z, Wang Y, Zu Y, Fu Y, Li N, Guo N, et al. Synthesis of polyethylenimine (PEI) functionalized silver nanoparticles by a hydrothermal method and their antibacterial activity study. Mater Sci Eng C. 2014;42:31–7. https://doi.org/10.1016/j.msec.2014.05.007.
Ramesh PS, Kokila T, Geetha D. Plant mediated green synthesis and antibacterial activity of silver nanoparticles using Emblica officinalis fruit extract. Spectrochim Acta A Mol Biomol Spectrosc. 2015;142:339–43. https://doi.org/10.1016/j.saa.2015.01.062.
Hemmati S, Rashtiani A, Zangeneh MM, Mohammadi P, Zangeneh A, Veisi H. Green synthesis and characterization of silver nanoparticles using Fritillaria flower extract and their antibacterial activity against some human pathogens. Polyhedron. 2019;158:8–14. https://doi.org/10.1016/j.poly.2018.10.049.
Yulizar Y, Gunlazuardi J, Apriandanu DOB, Syahfitri TWW. CuO-modified CoTiO3 via Catharanthus roseus extract: a novel nanocomposite with high photocatalytic activity. Mater Lett. 2020;277:128349–53. https://doi.org/10.1016/j.matlet.2020.128349.
Suwarno AC, Yulizar Y, Apriandanu DOB, Surya RM. Biosynthesis of Dy2O3 nanoparticles using Piper retrofractum Vahl extract: optical, structural, morphological, and photocatalytic properties. J Mol Struct. 2022;1264:133123–32. https://doi.org/10.1016/j.molstruc.2022.133123.
Wang YY, Li JQ, Liu HG, Wang YZ. Attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) combined with chemometrics methods for the classification of Lingzhi species. Molecules. 2019;24:2210–22. https://doi.org/10.3390/molecules24122210.
Yulizar Y, Eprasatya A, Bagus Apriandanu DO, Yunarti RT. Facile synthesis of ZnO/GdCoO3 nanocomposites, characterization and their photocatalytic activity under visible light illumination. Vacuum. 2021;183:109821. https://doi.org/10.1016/j.vacuum.2020.109821.
Elviera, Yulizar Y, Apriandanu DOB, Marcony Surya R. Fabrication of novel SnWO4/ZnO using Muntingia calabura L. leaf extract with enhanced photocatalytic methylene blue degradation under visible light irradiation. Ceram Int. 2022;48:3564–77. https://doi.org/10.1016/j.ceramint.2021.10.135.
Ankamwar B. Biosynthesis of gold nanoparticles (Green-Gold) using leaf extract of Terminalia catappa. E-J Chem. 2010;7:1334–9. https://doi.org/10.1155/2010/745120.
Khalil MMH, Ismail EH, El-Magdoub F. Biosynthesis of Au nanoparticles using olive leaf extract. 1st nano updates. Arab J Chem. 2012;5:431–7. https://doi.org/10.1016/j.arabjc.2010.11.011.
Alnehia A, Al-Sharabi A, Al-Hammadi AH, Al-Odayni AB, Alramadhan SA, Alodeni RM. Phyto-mediated synthesis of silver-doped zinc oxide nanoparticles from Plectranthus barbatus leaf extract: optical, morphological, and antibacterial properties. Biomass Convers Biorefin. 2023. https://doi.org/10.1007/s13399-023-03907-5.
Naseer M, Aslam U, Khalid B, Chen B. Green route to synthesize zinc oxide nanoparticles using leaf extracts of Cassia fistula and Melia azadarach and their antibacterial potential. Sci Rep. 2020;10:9055. https://doi.org/10.1038/s41598-020-65949-3.
Kumar P, Selvi SS, Govindaraju M. Seaweed-mediated biosynthesis of silver nanoparticles using Gracilaria corticata for its antifungal activity against Candida spp. Appl Nanosci (Switzerland). 2013;3:495–500. https://doi.org/10.1007/s13204-012-0151-3.
Singh K, Singh J, Rawat M. Green synthesis of zinc oxide nanoparticles using Punica granatum leaf extract and its application towards photocatalytic degradation of Coomassie brilliant blue R-250 dye. SN Appl Sci. 2019;1:624–31. https://doi.org/10.1007/s42452-019-0610-5.
Guilger-Casagrande M, de Lima R. Synthesis of silver nanoparticles mediated by fungi: a review. Front Bioeng Biotechnol. 2019;7:287–302. https://doi.org/10.3389/fbioe.2019.00287.
Yusof HM, Mohamad R, Zaidan UH, Rahman NAA. Microbial synthesis of zinc oxide nanoparticles and their potential application as an antimicrobial agent and a feed supplement in animal industry: a review. J Anim Sci Biotechnol. 2019. https://doi.org/10.1186/s40104-019-0368-z.
Sathyavathi R, Krishna MB, Rao SV, Saritha R, Rao DN. Biosynthesis of silver nanoparticles using Coriandrum sativum leaf extract and their application in nonlinear optics. Adv Sci Lett. 2010;3:138–43. https://doi.org/10.1166/asl.2010.1099.
Alharthi FA, Alghamdi AA, Al-Zaqri N, Alanazi HS, Alsyahi AA, El MA, et al. Facile one-pot green synthesis of Ag–ZnO Nanocomposites using potato peeland their Ag concentration dependent photocatalytic properties. Sci Rep. 2020;10:1–14. https://doi.org/10.1038/s41598-020-77426-y.
Chithra MJ, Pushpanathan MSK. Effect of pH on crystal size and photoluminescence property of ZnO nanoparticles prepared by chemical precipitation method. Acta Metall Sin (Engl Lett). 2015;28:394–404. https://doi.org/10.1007/s40195-015-0218-8.
Venis RA, Basu OD. Mechanisms and efficacy of disinfection in ceramic water filters: a critical review. Crit Rev Environ Sci Technol. 2021;51:2934–74. https://doi.org/10.1080/10643389.2020.1806685.
Ghosh T, Das AB, Jena B, Pradhan C. Frontiers in life science antimicrobial effect of silver zinc oxide (Ag–ZnO) nanocomposite particles. Front Life Sci. 2015;8:47–54. https://doi.org/10.1080/21553769.2014.952048.
Talari MK, Bakar A, Majeed A, Tripathi DK, Tripathy M. Synthesis, characterization and antimicrobial investigation of mechanochemically processed silver doped ZnO nanoparticles. Chem Pharm Bull. 2012;60(7):818–24. https://doi.org/10.1248/cpb.c110479.
Cardoza-Contreras MN, Vásquez-Gallegos A, Vidal-Limon A, Romo-Herrera JM, Águila S, Contreras OE. Photocatalytic and antimicrobial properties of Ga doped and Ag doped ZnO nanorods for water treatment. Catalysts. 2019;9:165–76. https://doi.org/10.3390/catal9020165.
Mousavi-kouhi SM, Beyk-khormizi A, Sadegh M. Silver-zinc oxide nanocomposite: from synthesis to antimicrobial and anticancer properties. Ceram Int. 2021;47:21490–7. https://doi.org/10.1016/j.ceramint.2021.04.160.
Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci. 2004;275(177):182. https://doi.org/10.1016/j.jcis.2004.02.012.
Pazos-Ortiz E, Roque-Ruiz JH, Hinojos-Márquez EA, López-Esparza J, Donohué-Cornejo A, Cuevas-González JC, et al. Dose-dependent antimicrobial activity of silver nanoparticles on polycaprolactone fibers against gram-positive and gram-negative bacteria. J Nanomater. 2017. https://doi.org/10.1155/2017/4752314.
Lalley J, Dionysiou DD, Varma RS, Shankara S, Yang DJ, Nadagouda MN. ScienceDirect Silver-based antibacterial surfaces for drinking water disinfection—an overview. Curr Opin Chem Eng. 2014;3:25–9. https://doi.org/10.1016/j.coche.2013.09.004.
Choi O, Deng KK, Kim NJ, Ross L, Surampalli RY, Hu Z. The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Res. 2008;42:3066–74. https://doi.org/10.1016/j.watres.2008.02.021.
Fahimmunisha BA, Ishwarya R, AlSalhi MS, Devanesan S, Govindarajan M, Vaseeharan B. Green fabrication, characterization and antibacterial potential of zinc oxide nanoparticles using Aloe socotrina leaf extract: a novel drug delivery approach. J Drug Deliv Sci Technol. 2020. https://doi.org/10.1016/j.jddst.2019.101465.
Noohpisheh Z, Amiri H, Farhadi S, Mohammadi-gholami A. Green synthesis of Ag–ZnO nanocomposites using Trigonella foenum-graecum leaf extract and their antibacterial, antifungal, antioxidant and photocatalytic properties. Spectrochim Acta A Mol Biomol Spectrosc. 2020;240:118595. https://doi.org/10.1016/j.saa.2020.118595.
Rajabi HR, Naghiha R, Kheirizadeh M, Sadatfaraji H, Mirzaei A, Alvand ZM. Microwave assisted extraction as an efficient approach for biosynthesis of zinc oxide nanoparticles: synthesis, characterization, and biological properties. Mater Sci Eng C. 2017;78:1109–18. https://doi.org/10.1016/j.msec.2017.03.090.
Mohammed MT, Farhan A, Abdula A. Green synthesis of silver nanoparticles using Carica papaya juice and study of their biochemical application. J Pharm Sci Res. 2019;11:1025–34.
Dibrov P, Dzioba J, Gosink KK, Häse CC. Chemiosmotic mechanism of antimicrobial activity of Ag+ in Vibrio cholerae. Antimicrob Agents Chemother. 2002;46:2668–70. https://doi.org/10.1128/AAC.46.8.2668-2670.2002.
Hamouda T, Myc A, Donovan B, Shih AY, Reuter JD, Baker JR. A novel surfactant nanoemulsion with a unique non-irritant topical antimicrobial activity against bacteria, enveloped viruses and fungi. Microbiol Res. 2001;156:1–7. https://doi.org/10.1078/0944-5013-00069.
Siddiqi KS, Husen A, Rao RAK. A review on biosynthesis of silver nanoparticles and their biocidal properties. J Nanobiotechnology. 2018;16:14–42. https://doi.org/10.1186/s12951-018-0334-5.