Facile and green synthetic strategy of birnessite-type MnO2 with high efficiency for airborne benzene removal at low temperatures

Applied Catalysis B: Environmental - Tập 245 - Trang 569-582 - 2019
Yang Liu1, Hao Zhou1, Ranran Cao2, Xingyun Liu1, Pengyi Zhang2, Jingjing Zhan1, Lifen Liu1
1Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Food and Environment, Dalian University of Technology, Panjin 124221, China
2School of Environment, Tsinghua University, Beijing 100084, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

https://www.healtheffects.org/announcements/state-global-air-2018-over-7-billion-people-face-unsafe-air (Accessed 12 September 2018).

Amann, 2000, The revision of the air quality legislation in the European Union related to ground-level ozone, J. Hazard. Mater., 78, 41, 10.1016/S0304-3894(00)00216-8

http://www.who.int/ipcs/features/benzene.pdf (Accessed 12 September 2018).

Li, 2009, Catalytic combustion of VOCs on non-noble metal catalysts, Catal. Today, 148, 81, 10.1016/j.cattod.2009.03.007

Deng, 2018, Silver incorporated into cryptomelane-type Manganese oxide boosts the catalytic oxidation of benzene, Appl. Catal. B: Environ., 239, 214, 10.1016/j.apcatb.2018.08.006

Kim, 2009, Properties and performance of Pd based catalysts for catalytic oxidation of volatile organic compounds, Appl. Catal. B: Environ., 92, 429, 10.1016/j.apcatb.2009.09.001

He, 2010, Comprehensive investigation of Pd/ZSM-5/MCM-48 composite catalysts with enhanced activity and stability for benzene oxidation, Appl. Catal. B: Environ., 96, 466, 10.1016/j.apcatb.2010.03.005

Liu, 2014, Mesoporous Co3O4-supported gold nanocatalysts: highly active for the oxidation of carbon monoxide, benzene, toluene, and o-xylene, J. Catal., 309, 408, 10.1016/j.jcat.2013.10.019

da Silva, 2015, Controlling size, morphology, and surface composition of AgAu nanodendrites in 15 s for improved environmental catalysis under low metal loadings, ACS Appl. Mater. Interfaces, 7, 25624, 10.1021/acsami.5b08725

Chen, 2017, Single silver adatoms on nanostructured manganese oxide surfaces: boosting oxygen activation for benzene abatement, Environ. Sci. Technol., 51, 2304, 10.1021/acs.est.6b04340

Kim, 2002, The catalytic oxidation of aromatic hydrocarbons over supported metal oxide, J. Hazard. Mater., B91, 285, 10.1016/S0304-3894(01)00396-X

Debecker, 2010, One-step non-hydrolytic sol-gel preparation of efficient V2O5-TiO2 catalysts for VOC total oxidation, Appl. Catal. B: Environ., 94, 38, 10.1016/j.apcatb.2009.10.018

Debecker, 2010, Total oxidation of benzene and chlorobenzene with MoO3- and WO3-promoted V2O5/TiO2 catalysts prepared by a nonhydrolytic sol-gel route, Catal. Today, 157, 125, 10.1016/j.cattod.2010.02.010

Kim, 2010, Catalytic combustion of VOCs over a series of manganese oxide catalysts, Appl. Catal. B: Environ., 98, 180, 10.1016/j.apcatb.2010.05.027

Li, 2011, Catalytic oxidation of benzene over CuO/Ce1-xMnxO2 catalysts, Appl. Catal. B: Environ., 103, 143, 10.1016/j.apcatb.2011.01.020

Xavier, 2015, Simultaneous catalytic oxidation of carbon monoxide, hydrocarbons and soot with Ce-Zr-Nd mixed oxides in simulated diesel exhaust conditions, Appl. Catal. B: Environ., 162, 412, 10.1016/j.apcatb.2014.07.013

Huang, 2015, Low temperature catalytic oxidation of volatile organic compounds: a review, Catal. Sci. Technol., 5, 2649, 10.1039/C4CY01733A

Post, 1999, Manganese oxide minerals: crystal structures and economic and environmental significance, Proc. Natl. Acad. Sci. U. S. A., 96, 3447, 10.1073/pnas.96.7.3447

Grangeon, 2012, Zn sorption modifies dynamically the layer and interlayer structure of vernadite, Geochim. Cosmochim. Ac., 85, 302, 10.1016/j.gca.2012.02.019

Zeng, 2017, Cu doped OL-1 nanoflower: A UV-vis-infrared light-driven catalystfor gas-phase environmental purification with very high efficiency, Appl. Catal. B: Environ., 200, 521, 10.1016/j.apcatb.2016.07.042

Zhu, 2017, Cerium modified birnessite-type MnO2 for gaseous formaldehyde oxidation at low temperature, Appl. Catal. B: Environ., 211, 212, 10.1016/j.apcatb.2017.04.025

Yadav, 2017, Regenerable Cu-intercalated MnO2 layered cathode for highly cyclable energy dense batteries, Nat. Commun., 8, 14424, 10.1038/ncomms14424

Liu, 2018, Nitric acid-treated birnessite-type MnO2: An efficient and hydrophobic material for humid ozone decomposition, Appl. Surf. Sci., 442, 640, 10.1016/j.apsusc.2018.02.204

Liu, 2018, One-step synthesis of nanocarbon-decorated MnO2 with superior activity for indoor formaldehyde removal at room temperature, Appl. Catal. B: Environ., 235, 158, 10.1016/j.apcatb.2018.04.078

Hou, 2014, Tremendous effect of the morphology of birnessite-type manganese oxide nanostructures on catalytic activity, ACS Appl. Mater. Interfaces, 6, 14981, 10.1021/am5027743

Ye, 2014, A comparative investigation on catalytic oxidation of CO, benzene, and toluene over birnessites derived from different routes, Appl. Surf. Sci., 317, 892, 10.1016/j.apsusc.2014.08.126

Li, 2016, Effective Ti doping of δ-MnO2 via anion route for highly active catalytic combustion of benzene, J. Phys. Chem. C, 120, 10275, 10.1021/acs.jpcc.6b00931

Liu, 2018, Tuning the interlayer cations of birnessite-type MnO2 to enhance its oxidation ability for gaseous benzene with water resistance, Catal. Sci. Technol., 8, 5344, 10.1039/C8CY01147H

Jia, 2016, Catalytic decomposition of gaseous ozone over manganese dioxides with different crystal structures, Appl. Catal. B: Environ., 189, 210, 10.1016/j.apcatb.2016.02.055

Liu, 2017, Removing surface hydroxyl groups of Ce-modified MnO2 to significantly improve its stability for gaseous ozone decomposition, J. Phys. Chem. C, 121, 23488, 10.1021/acs.jpcc.7b07931

Liu, 2017, Catalytic decomposition of gaseous ozone over todorokite-type manganese dioxides at room temperature: effects of cerium modification, Appl. Catal. A: Gen., 530, 102, 10.1016/j.apcata.2016.11.028

Thevenet, 2015, Acetaldehyde adsorption on TiO2: influence of NO2 preliminary adsorption, Chem. Eng. J., 281, 126, 10.1016/j.cej.2015.06.084

Lin, 2016, Catalytic deep oxidation of NO by ozone over MnOx loaded sphericalalumina catalyst, Appl. Catal. B: Environ., 198, 100, 10.1016/j.apcatb.2016.05.058

Tang, 2014, Oxalate route for promoting activity of manganese oxide catalysts in total VOCs’ oxidation: effect of calcination temperature and preparation method, J. Mater. Chem. A Mater. Energy Sustain., 2, 2544, 10.1039/C3TA13847J

Chen, 2018, Homogeneous introduction of CeOy into MnOx-based catalyst for oxidation of aromatic VOCs, Appl. Catal. B: Environ., 224, 825, 10.1016/j.apcatb.2017.11.036

Li, 2015, Effect of Cu substitution on promoted benzene oxidation over porous CuCo-based catalysts derived from layered double hydroxide with resistance of water vapor, Appl. Catal. B: Environ., 166–167, 260, 10.1016/j.apcatb.2014.11.040

Tang, 2015, Co-nanocasting synthesis of mesoporous Cu-Mn composite oxides and their promoted catalytic activities for gaseous benzene removal, Appl. Catal. B: Environ., 162, 110, 10.1016/j.apcatb.2014.06.030

Mo, 2016, Excellent low temperature performance for total benzene oxidation over mesoporous CoMnAl composited oxides from hydrotalcites, J. Mater. Chem. A, 4, 8113, 10.1039/C6TA02593E

Mo, 2016, Rich surface Co(III) ions-enhanced Co nanocatalyst benzene/toluene oxidation performance derived from CoIICoIII layered double hydroxide, Nanoscale, 8, 15763, 10.1039/C6NR04902H

Boppana, 2013, Nanostructured alkaline-cation-containing δ-MnO2 for photocatalytic water oxidation, Adv. Funct. Mater., 23, 878, 10.1002/adfm.201202141

Ollivier, 1998, A “Chimie Douce” sythesis of perovskite-type SrTa2O6 and SrTa2-xNbxO6, Chem. Mater., 10, 2585, 10.1021/cm9802144

Wang, 2018, Identifying influential parameters of octahedrally coordinated cations in spinel ZnMnxCo2-xO4 oxides for the oxidation reaction, ACS Catal., 8, 8568, 10.1021/acscatal.8b02376

Murray, 1985, Oxidation of Mn(II): Initial mineralogy, oxidation state and ageing, Geochim. Cosmochim. Ac., 49, 463, 10.1016/0016-7037(85)90038-9

Liu, 2019, Heat treatment of MnCO3: an easy way to obtain efficient and stable MnO2 for humid O3 decomposition, Appl. Surf. Sci., 463, 374, 10.1016/j.apsusc.2018.08.226

Yang, 2018, UV-vis-infrared light-driven photothermocatalytic abatement of CO on Cu doped ramsdellite MnO2 nanosheets enhanced by a photoactivation effect, Appl. Catal. B: Environ., 224, 751, 10.1016/j.apcatb.2017.11.017

Venkataswamy, 2015, Nanostructured manganese doped ceria solid solutions for CO oxidation at lower temperatures, Appl. Catal. B: Environ., 162, 122, 10.1016/j.apcatb.2014.06.038

Ye, 2018, Influence of the preparation method on the activity of copper-manganese oxides for toluene total oxidation, Appl. Catal. B: Environ., 223, 154, 10.1016/j.apcatb.2017.06.072

Yang, 2015, Deep oxidation of chlorinated VOCs over CeO2-based transition metal mixed oxide catalysts, Appl. Catal. B: Environ., 162, 227, 10.1016/j.apcatb.2014.06.048

Chen, 2017, Hydrolysis driving redox reaction to synthesize Mn-Fe binary oxides as highly active catalysts for the removal of toluene, Chem. Eng. J., 330, 281, 10.1016/j.cej.2017.07.147

Chen, 2018, Catalytic combustion of toluene over mesoporous Cr2O3-supported platinum catalysts prepared by in situ pyrolysis of MOFs, Chem. Eng. J., 334, 768, 10.1016/j.cej.2017.10.091

Weng, 2017, Catalytic oxidation of chlorobenzene over MnxCe1-xO2/HZSM-5 catalysts: a study with practical implications, Environ. Sci. Technol., 51, 8057, 10.1021/acs.est.6b06585

de Rivas, 2007, On the mechanism of the catalytic destruction of 1,2-dichloroethane over Ce/Zr mixed oxide catalysts, J. Mol. Catal. A Chem., 278, 181, 10.1016/j.molcata.2007.09.006

Wan, 1996, Studies on the catalytic activity of zirconia promoted with sulfate, iron, and manganese, J. Catal., 158, 311, 10.1006/jcat.1996.0030

Biabani-Ravandi, 2013, Low-temperature CO oxidation over nanosized Fe-Co mixed oxide catalysts: effect of calcination temperature and operational conditions, Chem. Eng. Sci., 94, 237, 10.1016/j.ces.2013.02.002

Xing, 2008, Characterization and reactivity of MnOx supported on mesoporous zirconia for herbicide 2,4-D mineralization with ozone, Environ. Sci. Technol., 42, 3363, 10.1021/es0718671

Mars, 1954, Oxidations carried out by means of vanadium oxide catalysts, Chem. Eng. Sci., 3, 41, 10.1016/S0009-2509(54)80005-4

Lukashuk, 2018, Operando insights into CO oxidation on cobalt oxide catalysts by NAP-XPS, FTIR, and XRD, ACS Catal., 8, 8630, 10.1021/acscatal.8b01237

Xu, 2018, Engineering Ni3+cations in NiO lattice at the atomic level by Li+ doping: the roles of Ni3+ and oxygen species for CO oxidation, ACS Catal., 8, 8033, 10.1021/acscatal.8b01692

Mehar, 2018, Understanding the intrinsic surface reactivity of single-layer and multilayer PdO(101) on Pd(100), ACS Catal., 8, 8553, 10.1021/acscatal.8b02191

Wang, 2015, Catalytic oxidation of chlorinated benzenes over V2O5/TiO2 catalysts: the effects of chlorine substituents, Catal. Today, 241, 92, 10.1016/j.cattod.2014.04.002

Corma, 2002, Lewis acids as catalysts in oxidation reactions: from homogeneous to heterogeneous systems, Chem. Rev., 102, 3837, 10.1021/cr010333u

Wang, 2017, Layered birnessite-type MnO2 with surface pits for enhanced catalytic formaldehyde oxidation activity, J. Mater. Chem. A, 5, 5719, 10.1039/C6TA09793F

Wang, 2018, Graphene-assisted photothermal effect on promoting catalytic activity of layered MnO2 for gaseous formaldehyde oxidation, Appl. Catal. B: Environ., 239, 77, 10.1016/j.apcatb.2018.08.008

Liu, 2018, Oxygen vacancy promoting dimethyl carbonate synthesis from CO2 and methanol over Zr-doped CeO2 nanorods, ACS Catal., 8, 10446, 10.1021/acscatal.8b00415