Facile and green synthetic strategy of birnessite-type MnO2 with high efficiency for airborne benzene removal at low temperatures
Tóm tắt
Từ khóa
Tài liệu tham khảo
https://www.healtheffects.org/announcements/state-global-air-2018-over-7-billion-people-face-unsafe-air (Accessed 12 September 2018).
Amann, 2000, The revision of the air quality legislation in the European Union related to ground-level ozone, J. Hazard. Mater., 78, 41, 10.1016/S0304-3894(00)00216-8
http://www.who.int/ipcs/features/benzene.pdf (Accessed 12 September 2018).
Li, 2009, Catalytic combustion of VOCs on non-noble metal catalysts, Catal. Today, 148, 81, 10.1016/j.cattod.2009.03.007
Deng, 2018, Silver incorporated into cryptomelane-type Manganese oxide boosts the catalytic oxidation of benzene, Appl. Catal. B: Environ., 239, 214, 10.1016/j.apcatb.2018.08.006
Kim, 2009, Properties and performance of Pd based catalysts for catalytic oxidation of volatile organic compounds, Appl. Catal. B: Environ., 92, 429, 10.1016/j.apcatb.2009.09.001
He, 2010, Comprehensive investigation of Pd/ZSM-5/MCM-48 composite catalysts with enhanced activity and stability for benzene oxidation, Appl. Catal. B: Environ., 96, 466, 10.1016/j.apcatb.2010.03.005
Liu, 2014, Mesoporous Co3O4-supported gold nanocatalysts: highly active for the oxidation of carbon monoxide, benzene, toluene, and o-xylene, J. Catal., 309, 408, 10.1016/j.jcat.2013.10.019
da Silva, 2015, Controlling size, morphology, and surface composition of AgAu nanodendrites in 15 s for improved environmental catalysis under low metal loadings, ACS Appl. Mater. Interfaces, 7, 25624, 10.1021/acsami.5b08725
Chen, 2017, Single silver adatoms on nanostructured manganese oxide surfaces: boosting oxygen activation for benzene abatement, Environ. Sci. Technol., 51, 2304, 10.1021/acs.est.6b04340
Kim, 2002, The catalytic oxidation of aromatic hydrocarbons over supported metal oxide, J. Hazard. Mater., B91, 285, 10.1016/S0304-3894(01)00396-X
Debecker, 2010, One-step non-hydrolytic sol-gel preparation of efficient V2O5-TiO2 catalysts for VOC total oxidation, Appl. Catal. B: Environ., 94, 38, 10.1016/j.apcatb.2009.10.018
Debecker, 2010, Total oxidation of benzene and chlorobenzene with MoO3- and WO3-promoted V2O5/TiO2 catalysts prepared by a nonhydrolytic sol-gel route, Catal. Today, 157, 125, 10.1016/j.cattod.2010.02.010
Kim, 2010, Catalytic combustion of VOCs over a series of manganese oxide catalysts, Appl. Catal. B: Environ., 98, 180, 10.1016/j.apcatb.2010.05.027
Li, 2011, Catalytic oxidation of benzene over CuO/Ce1-xMnxO2 catalysts, Appl. Catal. B: Environ., 103, 143, 10.1016/j.apcatb.2011.01.020
Xavier, 2015, Simultaneous catalytic oxidation of carbon monoxide, hydrocarbons and soot with Ce-Zr-Nd mixed oxides in simulated diesel exhaust conditions, Appl. Catal. B: Environ., 162, 412, 10.1016/j.apcatb.2014.07.013
Huang, 2015, Low temperature catalytic oxidation of volatile organic compounds: a review, Catal. Sci. Technol., 5, 2649, 10.1039/C4CY01733A
Post, 1999, Manganese oxide minerals: crystal structures and economic and environmental significance, Proc. Natl. Acad. Sci. U. S. A., 96, 3447, 10.1073/pnas.96.7.3447
Grangeon, 2012, Zn sorption modifies dynamically the layer and interlayer structure of vernadite, Geochim. Cosmochim. Ac., 85, 302, 10.1016/j.gca.2012.02.019
Zeng, 2017, Cu doped OL-1 nanoflower: A UV-vis-infrared light-driven catalystfor gas-phase environmental purification with very high efficiency, Appl. Catal. B: Environ., 200, 521, 10.1016/j.apcatb.2016.07.042
Zhu, 2017, Cerium modified birnessite-type MnO2 for gaseous formaldehyde oxidation at low temperature, Appl. Catal. B: Environ., 211, 212, 10.1016/j.apcatb.2017.04.025
Yadav, 2017, Regenerable Cu-intercalated MnO2 layered cathode for highly cyclable energy dense batteries, Nat. Commun., 8, 14424, 10.1038/ncomms14424
Liu, 2018, Nitric acid-treated birnessite-type MnO2: An efficient and hydrophobic material for humid ozone decomposition, Appl. Surf. Sci., 442, 640, 10.1016/j.apsusc.2018.02.204
Liu, 2018, One-step synthesis of nanocarbon-decorated MnO2 with superior activity for indoor formaldehyde removal at room temperature, Appl. Catal. B: Environ., 235, 158, 10.1016/j.apcatb.2018.04.078
Hou, 2014, Tremendous effect of the morphology of birnessite-type manganese oxide nanostructures on catalytic activity, ACS Appl. Mater. Interfaces, 6, 14981, 10.1021/am5027743
Ye, 2014, A comparative investigation on catalytic oxidation of CO, benzene, and toluene over birnessites derived from different routes, Appl. Surf. Sci., 317, 892, 10.1016/j.apsusc.2014.08.126
Li, 2016, Effective Ti doping of δ-MnO2 via anion route for highly active catalytic combustion of benzene, J. Phys. Chem. C, 120, 10275, 10.1021/acs.jpcc.6b00931
Liu, 2018, Tuning the interlayer cations of birnessite-type MnO2 to enhance its oxidation ability for gaseous benzene with water resistance, Catal. Sci. Technol., 8, 5344, 10.1039/C8CY01147H
Jia, 2016, Catalytic decomposition of gaseous ozone over manganese dioxides with different crystal structures, Appl. Catal. B: Environ., 189, 210, 10.1016/j.apcatb.2016.02.055
Liu, 2017, Removing surface hydroxyl groups of Ce-modified MnO2 to significantly improve its stability for gaseous ozone decomposition, J. Phys. Chem. C, 121, 23488, 10.1021/acs.jpcc.7b07931
Liu, 2017, Catalytic decomposition of gaseous ozone over todorokite-type manganese dioxides at room temperature: effects of cerium modification, Appl. Catal. A: Gen., 530, 102, 10.1016/j.apcata.2016.11.028
Thevenet, 2015, Acetaldehyde adsorption on TiO2: influence of NO2 preliminary adsorption, Chem. Eng. J., 281, 126, 10.1016/j.cej.2015.06.084
Lin, 2016, Catalytic deep oxidation of NO by ozone over MnOx loaded sphericalalumina catalyst, Appl. Catal. B: Environ., 198, 100, 10.1016/j.apcatb.2016.05.058
Tang, 2014, Oxalate route for promoting activity of manganese oxide catalysts in total VOCs’ oxidation: effect of calcination temperature and preparation method, J. Mater. Chem. A Mater. Energy Sustain., 2, 2544, 10.1039/C3TA13847J
Chen, 2018, Homogeneous introduction of CeOy into MnOx-based catalyst for oxidation of aromatic VOCs, Appl. Catal. B: Environ., 224, 825, 10.1016/j.apcatb.2017.11.036
Li, 2015, Effect of Cu substitution on promoted benzene oxidation over porous CuCo-based catalysts derived from layered double hydroxide with resistance of water vapor, Appl. Catal. B: Environ., 166–167, 260, 10.1016/j.apcatb.2014.11.040
Tang, 2015, Co-nanocasting synthesis of mesoporous Cu-Mn composite oxides and their promoted catalytic activities for gaseous benzene removal, Appl. Catal. B: Environ., 162, 110, 10.1016/j.apcatb.2014.06.030
Mo, 2016, Excellent low temperature performance for total benzene oxidation over mesoporous CoMnAl composited oxides from hydrotalcites, J. Mater. Chem. A, 4, 8113, 10.1039/C6TA02593E
Mo, 2016, Rich surface Co(III) ions-enhanced Co nanocatalyst benzene/toluene oxidation performance derived from CoIICoIII layered double hydroxide, Nanoscale, 8, 15763, 10.1039/C6NR04902H
Boppana, 2013, Nanostructured alkaline-cation-containing δ-MnO2 for photocatalytic water oxidation, Adv. Funct. Mater., 23, 878, 10.1002/adfm.201202141
Ollivier, 1998, A “Chimie Douce” sythesis of perovskite-type SrTa2O6 and SrTa2-xNbxO6, Chem. Mater., 10, 2585, 10.1021/cm9802144
Wang, 2018, Identifying influential parameters of octahedrally coordinated cations in spinel ZnMnxCo2-xO4 oxides for the oxidation reaction, ACS Catal., 8, 8568, 10.1021/acscatal.8b02376
Murray, 1985, Oxidation of Mn(II): Initial mineralogy, oxidation state and ageing, Geochim. Cosmochim. Ac., 49, 463, 10.1016/0016-7037(85)90038-9
Liu, 2019, Heat treatment of MnCO3: an easy way to obtain efficient and stable MnO2 for humid O3 decomposition, Appl. Surf. Sci., 463, 374, 10.1016/j.apsusc.2018.08.226
Yang, 2018, UV-vis-infrared light-driven photothermocatalytic abatement of CO on Cu doped ramsdellite MnO2 nanosheets enhanced by a photoactivation effect, Appl. Catal. B: Environ., 224, 751, 10.1016/j.apcatb.2017.11.017
Venkataswamy, 2015, Nanostructured manganese doped ceria solid solutions for CO oxidation at lower temperatures, Appl. Catal. B: Environ., 162, 122, 10.1016/j.apcatb.2014.06.038
Ye, 2018, Influence of the preparation method on the activity of copper-manganese oxides for toluene total oxidation, Appl. Catal. B: Environ., 223, 154, 10.1016/j.apcatb.2017.06.072
Yang, 2015, Deep oxidation of chlorinated VOCs over CeO2-based transition metal mixed oxide catalysts, Appl. Catal. B: Environ., 162, 227, 10.1016/j.apcatb.2014.06.048
Chen, 2017, Hydrolysis driving redox reaction to synthesize Mn-Fe binary oxides as highly active catalysts for the removal of toluene, Chem. Eng. J., 330, 281, 10.1016/j.cej.2017.07.147
Chen, 2018, Catalytic combustion of toluene over mesoporous Cr2O3-supported platinum catalysts prepared by in situ pyrolysis of MOFs, Chem. Eng. J., 334, 768, 10.1016/j.cej.2017.10.091
Weng, 2017, Catalytic oxidation of chlorobenzene over MnxCe1-xO2/HZSM-5 catalysts: a study with practical implications, Environ. Sci. Technol., 51, 8057, 10.1021/acs.est.6b06585
de Rivas, 2007, On the mechanism of the catalytic destruction of 1,2-dichloroethane over Ce/Zr mixed oxide catalysts, J. Mol. Catal. A Chem., 278, 181, 10.1016/j.molcata.2007.09.006
Wan, 1996, Studies on the catalytic activity of zirconia promoted with sulfate, iron, and manganese, J. Catal., 158, 311, 10.1006/jcat.1996.0030
Biabani-Ravandi, 2013, Low-temperature CO oxidation over nanosized Fe-Co mixed oxide catalysts: effect of calcination temperature and operational conditions, Chem. Eng. Sci., 94, 237, 10.1016/j.ces.2013.02.002
Xing, 2008, Characterization and reactivity of MnOx supported on mesoporous zirconia for herbicide 2,4-D mineralization with ozone, Environ. Sci. Technol., 42, 3363, 10.1021/es0718671
Mars, 1954, Oxidations carried out by means of vanadium oxide catalysts, Chem. Eng. Sci., 3, 41, 10.1016/S0009-2509(54)80005-4
Lukashuk, 2018, Operando insights into CO oxidation on cobalt oxide catalysts by NAP-XPS, FTIR, and XRD, ACS Catal., 8, 8630, 10.1021/acscatal.8b01237
Xu, 2018, Engineering Ni3+cations in NiO lattice at the atomic level by Li+ doping: the roles of Ni3+ and oxygen species for CO oxidation, ACS Catal., 8, 8033, 10.1021/acscatal.8b01692
Mehar, 2018, Understanding the intrinsic surface reactivity of single-layer and multilayer PdO(101) on Pd(100), ACS Catal., 8, 8553, 10.1021/acscatal.8b02191
Wang, 2015, Catalytic oxidation of chlorinated benzenes over V2O5/TiO2 catalysts: the effects of chlorine substituents, Catal. Today, 241, 92, 10.1016/j.cattod.2014.04.002
Corma, 2002, Lewis acids as catalysts in oxidation reactions: from homogeneous to heterogeneous systems, Chem. Rev., 102, 3837, 10.1021/cr010333u
Wang, 2017, Layered birnessite-type MnO2 with surface pits for enhanced catalytic formaldehyde oxidation activity, J. Mater. Chem. A, 5, 5719, 10.1039/C6TA09793F
Wang, 2018, Graphene-assisted photothermal effect on promoting catalytic activity of layered MnO2 for gaseous formaldehyde oxidation, Appl. Catal. B: Environ., 239, 77, 10.1016/j.apcatb.2018.08.008