Facile Hydrothermal Synthesis of Tungsten Tri-oxide/Titanium Di-oxide Nanohybrid Structures as Photocatalyst for Wastewater Treatment Application
Tóm tắt
In this study, tungsten trioxide/titanium dioxide (WO3–TiO2) nanohybrid structures were prepared using a facile hydrothermal method. The nanosheets-like morphology was achieved for the prepared WO3–TiO2 nanohybrid that were confirmed by scanning electron microscopy. Provided X-ray photoelectron spectroscopy results also confirm the element existence and surface composition of the nanohybrid structure. The optical properties of the WO3–TiO2 nanohybrid were verified using UV–Visible diffuse reflectance spectroscopy (UV–Vis DRS) and photoluminescence spectroscopy. The UV–Vis DRS results indicated that the absorption edge for the WO3–TiO2 nanohybrid found a red shift towards the visible region due to the reduced bandgap (2.83 eV). The photocatalytic activity of the as-prepared WO3–TiO2 nanohybrid was evaluated by the photocatalytic degradation of Orange G dye in wastewaters under visible light. 94% Orange G dye was degraded in 210 min at neutral pH in the presence of WO3–TiO2 nanohybrid, which indicates the enhanced photocatalytic activity. The photo-luminescence technique has also confirmed the formation of –OH radicals during photodegradation by utilizing terephthalic acid as a probe molecule. These results indicate that the prepared nanohybrid material is a simple, low-cost, and efficient photocatalyst for the degradation of pollutants in wastewater treatment applications.
Tài liệu tham khảo
S. Anandan and J. J. Wu (2014). Ultrasound-assisted synthesis of TiO2–WO3 heterostructures for the catalytic degradation of Tergitol (NP-9) in water. Ultrason. Sonochem. 21, 1284–1288. https://doi.org/10.1016/j.ultsonch.2014.01.014.
A. Anshuman, S. S. Yarahmadi, and B. Vaidhyanathan (2018). Enhanced catalytic performance of reduced graphene oxide–TiO2 hybrids for efficient water treatment using microwave irradiation. RSC Adv. 8, 7709–7715. https://doi.org/10.1039/C8RA00031J.
M. A. Behnajady, B. Alizade, and N. Modirshahla (2011). Synthesis of Mg-doped TiO2 nanoparticles under different conditions and its photocatalytic activity. J. Photochem. Photobiol. 87, 1308–2131. https://doi.org/10.1111/j.1751-1097.2011.01002.x.
Y. P. Bhoi, S. R. Pradhan, C. Behera, and B. G. Mishra (2016). Visible light driven efficient photocatalytic degradation of Congo red dye catalyzed by hierarchical CuS-Bi2CuxW1-xO6-2x nanocomposite system. RSC Adv. 6, 35589. https://doi.org/10.1039/C6RA02612E.
B. Boga, I. Székely, Z. Pap, L. Baia, and M. Baia (2018). Detailed spectroscopic and structural analysis of TiO2/WO3 composite semiconductors. J Spectr. https://doi.org/10.1155/2018/6260458.
D. Bokare, R. C. Chikate, C. V. Rode, and K. M. Paknikar (2008). Iron-nickel bimetallic nanoparticles for reductive degradation of azo dye Orange G in aqueous solution. Appl. Catal. B 79, 270–278. https://doi.org/10.1016/j.apcatb.2007.10.033.
I. A. D. Castro and W. Ribeiro (2014). WO3/TiO2 heterostructures tailored by the oriented attachment mechanism: insights from their photocatalytic properties. CrystEngComm 16, 1514–1524. https://doi.org/10.1039/C3CE41668B.
Z. Chen, J. Zhao, X. Yang, Q. Ye, K. Huang, C. Hou, Z. Zhao, J. You, and Y. Li (2016). Fabrication of TiO2/WO3 composite nanofibers by electrospinning and photocatalystic performance of the resultant fabrics. Ind. Eng. Chem. Res. 55, 80–85. https://doi.org/10.1021/acs.iecr.5b03578.
P. Fitzpatrick and A. Ibhadon (2013). Heterogeneous photocatalysis: recent advances and applications. Catalysts. 3, 189–218. https://doi.org/10.3390/catal3010189.
U. I. Gaya and A. H. Abdullah (2008). Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems. J. Photochem. Photobiol. C 9, 1–12. https://doi.org/10.1016/j.jphotochemrev.2007.12.003.
S. Girish Kumar and L. Gomathi Devi (2011). Reviews on modified TiO2 photocatalysis under UV/visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics. J. Phys. Chem. A 115, 13211–13241. https://doi.org/10.1021/jp204364a.
E. Grabowska, J. W. Sobczak, M. Gazda, and A. Zalesk (2012). Surface properties and visible light activity of W-TiO2 photocatalysts prepared by surface impregnation and sol–gel method. Appl. Catal. B 117–118, 351–359. https://doi.org/10.1016/j.apcatb.2012.02.003.
S. J. Hong, S. Lee, J. S. Jang, and J. S. Lee (2011). Heterojunction BiVO4/WO3 electrodes for enhanced photoactivity of water oxidation. Energy Environ. Sci. 4, 1781–1787. https://doi.org/10.1039/C0EE00743A.
W. H. Hu, G. Q. Han, B. Dong, and C. G. Liu (2015). Facile synthesis of highly dispersed WO3⋅H2O and WO3 nanoplates for electrocatalytic hydrogen evolution. J Nanomater. https://doi.org/10.1155/2015/346086.
B. Jin, E. Jung, M. Ma, S. Kim, K. Zhang, J. I. Kim, Y. Son, and J. H. Park (2018). Solution-processed yolk-shell-shaped WO3/BiVO4 heterojunction photoelectrode for efficient solar water splitting. J. Mater. Chem. A 6, 2585–2592. https://doi.org/10.1039/C7TA08452H.
S. S. Kalanur, Y. J. Hwang, S. Y. Chae, and O. S. Joo (2013). Facile growth of aligned WO3 nanorods on FTO substrate for enhanced photoanodic water oxidation activity. J. Mater. Chem. A 1, 3479–3489. https://doi.org/10.1039/C3TA01175E.
P. Kanhere and Z. Chen (2014). A review on visible light active perovskite-based photocatalysts. Molecules 19, 19995–20022. https://doi.org/10.3390/molecules191219995.
D. Ke, H. Liu, T. Peng, X. Liu, and K. Dai (2008). Materials Letters, Preparation and photocatalytic activity of WO3/TiO2. nanocomposite particles. Mater. Lett. 62, 447–450. https://doi.org/10.1016/j.matlet.2007.05.060.
C. W. Lai (2018). WO3-TiO2 nanocomposite and its applications: a review. Nano Hybrids Compos. 20, 1–26.
C. W. Lai and S. Sreekantan (2013). Discovery of WO3/TiO2 nanostructure transformation by controlling content of NH4F to enhance photoelectrochemical response. Adv. Mater. Res. 620, 173–178.
C. W. Lai and S. Sreekantan (2013). Fabrication of WO3 nanostructures by anodization method for visible light driven water splitting and photodegradation of methyl orange. Mater. Sci. Semicond. Process. 16, 303–310. https://doi.org/10.1016/j.mssp.2012.10.007.
G. Mendoza-Damián, F. Tzompantzi, R. PérezHernández, and A. Hernández-Gordillo (2016). Improved photocatalytic activity of SnO2–ZnAl LDH prepared by one step Sn4+ incorporation. Appl. Clay Sci. 121–122, 127–136. https://doi.org/10.1016/j.clay.2015.12.007.
Z. D. Mitrovi, S. Stojadinovi, L. Lozzi, S. Aškrabi, M. Rosi, N. Tomi, N. Paunovi, S. Azovi, M. G. Nikoli, and S. Santucci (2016). WO3/TiO2 composite coatings: structural, optical and photocatalytic properties. Mater. Res. Bull. 83, 217–224. https://doi.org/10.1016/j.materresbull.2016.06.011.
D. Nagy, T. Firkala, E. Drotár, Á. Szegedi, K. László, and I. M. Szilágyi (2016). Photocatalytic WO3/TiO2 nanowires: WO3 polymorphs influencing the atomic layer deposition of TiO2. RSC Adv. 6, 95369–95377. https://doi.org/10.1039/c6ra18899k.
M. Canle, M.I.F. Perez, and J.A. Santaballa (2017). Photocatalyzed degradation/abatement of endocrine disruptors. Curr Opin Green Sustain Chem. 6, 101–138. https://doi.org/10.1016/j.cogsc.2017.06.008.
K. Nakataa and A. Fujishima (2012). TiO2 photocatalysis: design and applications. J Photochem. Photobiol C 13, 169–189. https://doi.org/10.1016/j.jphotochemrev.2012.06.001.
M. Y. Nassar, A. A. Ali, and A. S. Amin (2017). A facile Pechini sol–gel synthesis of TiO2/Zn2TiO2/ZnO/C nanocomposite: an efficient catalyst for the photocatalytic degradation of Orange G textile dye. RSC Adv. 7, 30411–30421. https://doi.org/10.1039/C7RA04899H.
B. Pal, B. L. Vijayan, S. G. Krishnan, M. Harilal, W. J. Basirun, A. Lowe, M. M. Yusoff, and R. Jose (2018). Hydrothermal syntheses of tungsten doped TiO2 and TiO2/WO3 composite using metal oxide precursors for charge storage applications. J. Alloys Compd. 740, 703–710. https://doi.org/10.1016/j.jallcom.2018.01.065.
C. Palanivel, N. R. Prabhakaran, and G. Selvakumar (2019). Morphological expedient flower-like nanostructures WO3–TiO2 nanocomposite material and its multi applications. Open Nano 4, 100026. https://doi.org/10.1016/j.onano.2018.07.001.
J. Pan, X. Li, Q. Zhao, T. Li, M. Tade, and S. Liu (2015). Construction of MnO.5ZnO.5Fe2O4 modified TiO2 nanotube array nanocomposite electrodes and their photoelectrocatalytic performance in the degradation of 2,4-DCP. J. Mater. Chem. C 3, 6025–6034. https://doi.org/10.1039/C5TC01008J.
N. Pugazhenthiran, S. Murugesan, and S. Anandan (2013). High surface area Ag-TiO2 nanotubes for solar/visible-light photocatalytic degradation of ceftiofur sodium. J. Hazard. Mater. 263, 541–549. https://doi.org/10.1016/j.jhazmat.2013.10.011.
A. Rajini, M. Nookaraju, S. Chirra, A. K. Adepu, and N. Venkatathri (2015). Titanium aminophosphates: synthesis, characterization and Orange G dye degradation studies. RSC Adv. 5, 106509–106518. https://doi.org/10.1039/C5RA19117C.
E. Safaei and S. Mohebbi (2016). Photocatalytic activity of nanohybrid CoTCPP@TiO2/WO3 in aerobic oxidation of alcohols under visible light. J. Mater. Chem. A 4, 3933–3946. https://doi.org/10.1039/C5TA09357K.
S. M. F. Shaikh, S. S. Kalanur, R. S. Mane, and O. S. Joo (2013). Monoclinic WO3 nanorods–rutile TiO2 nanoparticles core–shell interface for efficient DSSCs. Dalton Trans. 42, 10085–10088. https://doi.org/10.1039/C3DT50728A.
N. Tabatabaei, K. Dashtian, M. Ghaedi, M. M. Sabzehmeidani, and E. Ameri (2018). Novel visible light-driven Cu-based MOFs/Ag2O composite photocatalysts with enhanced photocatalytic activity toward the degradation of orange G: their photocatalytic mechanism and optimization study. New J. Chem. 42, 9720–9734. https://doi.org/10.1039/C7NJ03245E.
W. Wang, M. O. Tadé, and Z. Shao (2015). Research progress of perovskite materials in photocatalysis and photovoltaics related energy conversion and environmental treatment. Chem. Soc. Rev. 44, 5371–5408. https://doi.org/10.1039/c5cs00113g.
Y. Wang, R. Priambodo, and H. Zhang (2015). Huang degradation of Azo Dye Orange G in fluidized bed reactor using iron oxide as a heterogeneous photo-Fenton catalyst. RSC Adv. 5, 45276–45283. https://doi.org/10.1039/c5ra04238k.
C. L. Hsueh, Y. H. Huang, C. C. Wang, and C. Y. Chen (2006). Photooxidation of Azo Dye Reactive Black 5 Using a Novel-Supported Iron Oxide: Heterogeneous and Homogeneous Approach. Water Sci Technol. 53, 195–201. https://doi.org/10.2166/wst.2006.197.
J. Zhang and Y. Nosaka (2013). Quantitative detection of OH radicals for investigating the reaction mechanism of various visible- light TiO2 photocatalysts in aqueous suspension. J. Phys. Chem. C 117, 1383–1391. https://doi.org/10.1021/jp3105166.
J. Zhang, M. Chen, and L. Zhu (2016). Activation of persulfate by Co3O4 nanoparticles for orange G degradation. RSC Adv. 6, 758–768. https://doi.org/10.1039/C5RA22457H.
J. Zhu, Y. Koltypin, and A. Gedanken (2000). General sonochemical method for the preparation of nanophasic selenides: synthesis of ZnSe nanoparticles. Chem. Mater. 12, 73–78. https://doi.org/10.1021/cm990380r.