Facile Fabrication of Porous Bi2O3 Microspheres by Thermal Treatment of Bi2O2CO3 Microspheres and its Photocatalysis Properties

Journal of Cluster Science - Tập 24 - Trang 829-841 - 2013
Gangqiang Zhu1,2, Jia Lian1, Mirabbos Hojamberdiev1, Wenxiu Que2
1School of Physics and Information Technology, Shaanxi Normal University, Xi’an, People’s Republic of China
2Electronic Materials Research Laboratory, School of Electronic & Information Engineering, Xi’an Jiaotong University, Xi’an, People’s Republic of China

Tóm tắt

β- and α-phase porous Bi2O3 microspheres with an average size of around 4 μm had been synthesized by thermal treatment of Bi2O2CO3 microspheres at 350 and 400–500 °C respectively in an air atmosphere. The Bi2O2CO3 microspheres had been synthesized at a temperature of 180 °C by a hydrothermal process using Bi(NO3)3 as the bismuth source with the assist of citric acid. By combining the results of X-ray powder diffraction, transmission electron microscope, scanning electron microscopy, and UV–Visible absorption spectra, the structural, morphological and optical properties characterization of the products were performed. The photocatalytic activity of the as-prepared α- and β-phase porous Bi2O3 microspheres have been tested by degradation of methylene orange under visible light, indicating that porous β-Bi2O3 microspheres showed enhanced photocatalytic performance compared to P25 and α-Bi2O3 microspheres.

Tài liệu tham khảo

M. Inagaki, N. Kondo, R. Nonaka, E. Ito, M. Toyoda, and K. Sogabe (2009). J. Hazard. Mater. 161, 1514. P. Sujaridworakun, S. Larpkiattaworn, S. Saleepalin, and T. Wasanapiarnpong (2012). Adv. Powder Technol. 23, 752. Zhu GQ, Que WX, J. Cluster Sci. doi:10.1007/s10876-012-0531-6. G. Zhao, S. W. Liu, Q. F. Lu, M. Shi, and L. J. Song (2011). J. Clust. Sci. 22, 621. A. Cabot, A. Marsal, J. Arbiol, and J. R. Morante (2004). Sens. Actuator B 99, 74. Y. Gong, W. Ji, L. Zhang, B. Xie, H. Wang, and J. Power (2011). Sources 196, 928. P. Malik and D. Chakraborty (2010). Tetrahedron Lett. 51, 3521. H. W. Kim, J. W. Lee, and S. H. Shim (2007). Sens. Actuators B 126, 306. L. Zhou, W. Wang, H. Xu, S. Sun, and M. Shang (2009). Chem. Eur. J. 15, 1776. C. Hong, H. W. Kim, W. I. Lee, and C. Lee (2010). Thin solid Films 518, 6638. D. Yuan, J. Zeng, N. Kristian, Y. Wang, and X. Wang (2009). Electrochem. Commun. 11, 313. F. L. Zheng, G. R. Li, Y. N. Ou, Z. L. Wang, C. Y. Su, and Y. X. Tong (2010). Chem. Commun. 46, 5021. Z. H. Ai, Y. Huang, S. C. Lee, and L. Z. Zhang (2011). J. Alloys Compd. 509, 2044. R. Chen, Z. R. Shen, H. Wang, H. J. Zhou, Y. P. Liu, D. T. Ding, and T. H. Chen (2011). J. Alloys Compd. 509, 2588. A. Hameed, T. Montini, V. Gombac, and P. Fornasiero (2008). J. Am. Chem. Soc. 130, 9658. X. Chen and S. S. Mao (2007). Chem. Rev. 107, 2891. Y. F. Qiu, M. L. Yang, H. B. Fan, Y. Z. Zuo, Y. Y. Shao, Y. J. Xu, X. X. Yang, and S. H. Yang (2011). CrystEngCommunity 13, 1843. C. L. Wu, L. Shen, Q. L. Huang, and Y. C. Zhang (2011). Mater. Lett. 65, 1134. S. Anandan, G. J. Lee, P. K. Chen, C. Fan, and J. J. Wu (2010). Ind. Eng. Chem. Res. 49, 9729. Y. Zheng, F. Duan, M. Q. Chen, and Y. Xie (2010). J. Mol Catal A 317, 34. Z. F. Bian, J. Zhu, S. H. Wang, Y. Cao, X. F. Qian, and H. X. Li (2008). J. Phys. Chem. C 112, 6258. S. D. Sartale, B. R. Sankapal, M. L. Steiner, and A. Ennaui (2005). Thin Solid Films 480, 168. H. B. Lu, S. M. Wang, L. Zhao, J. C. Li, B. H. Dong, and Z. X. Xu (2011). J. Mater. Chem. 21, 4228.