Facial expression recognition with convolutional neural networks via a new face cropping and rotation strategy

The Visual Computer - Tập 36 Số 2 - Trang 391-404 - 2020
Kuan Li1, Yi Jin1, M. Waqar Akram1, Ruize Han2, Jiongwei Chen1
1Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, 96 Jinzhai road, Baohe District, Hefei, 230026, Anhui, People’s Republic of China
2School of Computer Science and Technology, Tianjin University, 135 Yaguan road, Jinnan District, Tianjin, 300350, People’s Republic of China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp 886–893. https://doi.org/10.1109/CVPR.2005.177 (2005)

De la Torre, F., Chu, W.S., Xiong, X., Vicente, F., Ding, X., Cohn, J.F.: Intraface. In: IEEE International Conference on Automatic Face and Gesture Recognition, pp 1–8. https://doi.org/10.1109/FG.2015.7163082 (2015)

Ekman, P., Friesen, W.V.: Facial action coding system: a technique for the measurement of facial movement. In: Consulting Psychologists, Palo Alto (1978)

Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. J. Mach. Learn. Res. 9, 249–256 (2010)

Gogić, I., Manhart, M., Pandžić, I.S., Ahlberg, J.: Fast facial expression recognition using local binary features and shallow neural networks. Vis. Comput. 1–16 (2018). https://doi.org/10.1007/s00371-018-1585-8

Goh, K.M., Ng, C.H., Lim, L.L., Sheikh, U.: Micro-expression recognition: an updated review of current trends, challenges and solutions. Vis. Comput. 1–24 (2018). https://doi.org/10.1007/s00371-018-1607-6

He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, pp 770–778 (2016)

Jarrett, K., Kavukcuoglu, K., Ranzato, M., Lecun, Y.: What is the best multi-stage architecture for object recognition? In: IEEE International Conference on Computer Vision, vol 30, pp 2146–2153 (2009)

Jin, H., Wang, X., Lian, Y., Hua, J.: Emotion information visualization through learning of 3d morphable face model. Vis. Comput. 1–14 (2018). https://doi.org/10.1007/s00371-018-1482-1

Jones, J.P., Palmer, L.A.: An evaluation of the two-dimensional gabor filter model of simple receptive fields in cat striate cortex. J. Neurophysiol. 58(6), 1233–1258 (1987). https://doi.org/10.1152/jn.1987.58.6.1233

King, D.E.: Dlib-ml: a machine learning toolkit. J. Mach. Learn. Res. 10, 1755–1758 (2009)

Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, pp 1097–1105. Curran Associates, Inc., Lake Tahoe, Nevada, USA (2012)

Liu, M., Li, S., Shan, S., Chen, X.: Au-inspired deep networks for facial expression feature learning. Neurocomputing 159(C), 126–136 (2015). https://doi.org/10.1016/j.neucom.2015.02.011

Liu, P., Han, S., Meng, Z., Tong, Y.: Facial expression recognition via a boosted deep belief network. In: IEEE Conference on Computer Vision and Pattern Recognition, pp 1805–1812 (2014)

Lopes, A.T., Aguiar, E.D., Souza, A.F.D., Oliveira-Santos, T.: Facial expression recognition with convolutional neural networks: coping with few data and the training sample order. Pattern Recognit. 61, 610–628 (2016). https://doi.org/10.1016/j.patcog.2016.07.026

Lucey, P., Cohn, J.F., Kanade, T., Saragih, J.: The extended cohn-kanade dataset (ck+): a complete dataset for action unit and emotion-specified expression. In: IEEE conference on computer vision and pattern recognition workshops, pp 94–101. https://doi.org/10.1109/CVPRW.2010.5543262 (2010)

Lyons, M.J., Budynek, J., Akamatsu, S.: Automatic classification of single facial images. IEEE Trans. Pattern Anal. Mach. Intell. 21(12), 1357–1362 (1999). https://doi.org/10.1109/34.817413

Lcun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998). https://doi.org/10.1109/5.726791

Matthews, I., Baker, S.: Active appearance models revisited. Int. J. Comput. Vis. 60, 135–164 (2004)

Mayya, V., Pai, R.M., Pai, M.M.M.: Automatic facial expression recognition using dcnn. Proc. Comput. Sci. 93, 453–461 (2016a). https://doi.org/10.1016/j.procs.2016.07.233

Mayya, V., Pai, R.M., Pai, M.M.M.: Combining temporal interpolation and dcnn for faster recognition of micro-expressions in video sequences. In: International Conference on Advances in Computing, Communications and Informatics, pp 699–703. https://doi.org/10.1109/ICACCI.2016.7732128 (2016)

Mehrabian, A.: Communication without words. Commun. Theory, 193–200 (2008)

Mohammadi, M.R., Fatemizadeh, E., Mahoor, M.H.: Pca-based dictionary building for accurate facial expression recognition via sparse representation. J. Vis. Commun. Image Represent. 25(5), 1082–1092 (2014). https://doi.org/10.1016/j.jvcir.2014.03.006

Ojala, T., Pietikäinen, M., Harwood, D.: A comparative study of texture measures with classification based on featured distributions. Pattern Recognit. 29(1), 51–59 (1996). https://doi.org/10.1016/0031-3203(95)00067-4

Owusu, E., Zhan, Y., Mao, Q.R.: An svm-adaboost facial expression recognition system. Appl. Intell. 40(3), 536–545 (2014)

Pu, X., Fan, K., Chen, X., Ji, L., Zhou, Z.: Facial expression recognition from image sequences using twofold random forest classifier. Neurocomputing 168(C), 1173–1180 (2015). https://doi.org/10.1016/j.neucom.2015.05.005

Rashid, M., Abu-Bakar, S., Mokji, M.: Human emotion recognition from videos using spatio-temporal and audio features. Vis. Comput. 29(12), 1269–1275 (2013)

Rivera, A.R., Castillo, J.R., Chae, O.: Local directional number pattern for face analysis: face and expression recognition. IEEE Trans. Image Process. 22(5), 1740–1752 (2013). https://doi.org/10.1109/TIP.2012.2235848

Shan, C., Gong, S., Mcowan, P.W.: Facial expression recognition based on local binary patterns: a comprehensive study. Image Vis. Comput. 27(6), 803–816 (2009). https://doi.org/10.1016/j.imavis.2008.08.005

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014)

Sutskever, I., Martens, J., Dahl, G., Hinton, G.: On the importance of initialization and momentum in deep learning. In: International Conference on Machine Learning, pp 1139–1147 (2013)

Uddin, M.Z., Hassan, M.M., Almogren, A., Zuair, M., Fortino, G., Torresen, J.: A facial expression recognition system using robust face features from depth videos and deep learning. Comput. Electr. Eng. 63, 114–125 (2017). https://doi.org/10.1016/j.compeleceng.2017.04.019

Wen, G., Hou, Z., Li, H., Li, D., Jiang, L., Xun, E.: Ensemble of deep neural networks with probability-based fusion for facial expression recognition. Cogn. Comput. 9(5), 597–610 (2017). https://doi.org/10.1007/s12559-017-9472-6

Yang, P., Liu, Q., Metaxas, D.N.: Boosting coded dynamic features for facial action units and facial expression recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, pp 1–6. https://doi.org/10.1109/CVPR.2007.383059 (2007)

Yu, Z., Liu, Q., Liu, G.: Deeper cascaded peak-piloted network for weak expression recognition. Vis. Comput. 34(12), 1691–1699 (2018). https://doi.org/10.1007/s00371-017-1443-0

Zeng, N., Zhang, H., Song, B., Liu, W., Li, Y., Dobaie, A.M.: Facial expression recognition via learning deep sparse autoencoders. Neurocomputing 273, 643–649 (2017). https://doi.org/10.1016/j.neucom.2017.08.043

Zhang, K., Huang, Y., Wu, H., Wang, L.: Facial smile detection based on deep learning features. In: 2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR). IEEE, pp 534–538 (2015)

Zhao, G., Pietikinen, M., Member, S.: Dynamic texture recognition using local binary patterns with an application to facial expressions. IEEE Trans. Pattern Anal. Mach. Intell. 29(6), 915–928 (2008). https://doi.org/10.1109/TPAMI.2007.1110

Zhao, J., Mao, X., Zhang, J.: Learning deep facial expression features from image and optical flow sequences using 3D CNN. Vis. Comput. 34(10), 1461–1475 (2018). https://doi.org/10.1007/s00371-018-1477-y