Facial expression recognition with convolutional neural networks via a new face cropping and rotation strategy
Tóm tắt
Từ khóa
Tài liệu tham khảo
Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp 886–893. https://doi.org/10.1109/CVPR.2005.177 (2005)
De la Torre, F., Chu, W.S., Xiong, X., Vicente, F., Ding, X., Cohn, J.F.: Intraface. In: IEEE International Conference on Automatic Face and Gesture Recognition, pp 1–8. https://doi.org/10.1109/FG.2015.7163082 (2015)
Ekman, P., Friesen, W.V.: Facial action coding system: a technique for the measurement of facial movement. In: Consulting Psychologists, Palo Alto (1978)
Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. J. Mach. Learn. Res. 9, 249–256 (2010)
Gogić, I., Manhart, M., Pandžić, I.S., Ahlberg, J.: Fast facial expression recognition using local binary features and shallow neural networks. Vis. Comput. 1–16 (2018). https://doi.org/10.1007/s00371-018-1585-8
Goh, K.M., Ng, C.H., Lim, L.L., Sheikh, U.: Micro-expression recognition: an updated review of current trends, challenges and solutions. Vis. Comput. 1–24 (2018). https://doi.org/10.1007/s00371-018-1607-6
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, pp 770–778 (2016)
Jarrett, K., Kavukcuoglu, K., Ranzato, M., Lecun, Y.: What is the best multi-stage architecture for object recognition? In: IEEE International Conference on Computer Vision, vol 30, pp 2146–2153 (2009)
Jin, H., Wang, X., Lian, Y., Hua, J.: Emotion information visualization through learning of 3d morphable face model. Vis. Comput. 1–14 (2018). https://doi.org/10.1007/s00371-018-1482-1
Jones, J.P., Palmer, L.A.: An evaluation of the two-dimensional gabor filter model of simple receptive fields in cat striate cortex. J. Neurophysiol. 58(6), 1233–1258 (1987). https://doi.org/10.1152/jn.1987.58.6.1233
King, D.E.: Dlib-ml: a machine learning toolkit. J. Mach. Learn. Res. 10, 1755–1758 (2009)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, pp 1097–1105. Curran Associates, Inc., Lake Tahoe, Nevada, USA (2012)
Liu, M., Li, S., Shan, S., Chen, X.: Au-inspired deep networks for facial expression feature learning. Neurocomputing 159(C), 126–136 (2015). https://doi.org/10.1016/j.neucom.2015.02.011
Liu, P., Han, S., Meng, Z., Tong, Y.: Facial expression recognition via a boosted deep belief network. In: IEEE Conference on Computer Vision and Pattern Recognition, pp 1805–1812 (2014)
Lopes, A.T., Aguiar, E.D., Souza, A.F.D., Oliveira-Santos, T.: Facial expression recognition with convolutional neural networks: coping with few data and the training sample order. Pattern Recognit. 61, 610–628 (2016). https://doi.org/10.1016/j.patcog.2016.07.026
Lucey, P., Cohn, J.F., Kanade, T., Saragih, J.: The extended cohn-kanade dataset (ck+): a complete dataset for action unit and emotion-specified expression. In: IEEE conference on computer vision and pattern recognition workshops, pp 94–101. https://doi.org/10.1109/CVPRW.2010.5543262 (2010)
Lyons, M.J., Budynek, J., Akamatsu, S.: Automatic classification of single facial images. IEEE Trans. Pattern Anal. Mach. Intell. 21(12), 1357–1362 (1999). https://doi.org/10.1109/34.817413
Lcun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998). https://doi.org/10.1109/5.726791
Matthews, I., Baker, S.: Active appearance models revisited. Int. J. Comput. Vis. 60, 135–164 (2004)
Mayya, V., Pai, R.M., Pai, M.M.M.: Automatic facial expression recognition using dcnn. Proc. Comput. Sci. 93, 453–461 (2016a). https://doi.org/10.1016/j.procs.2016.07.233
Mayya, V., Pai, R.M., Pai, M.M.M.: Combining temporal interpolation and dcnn for faster recognition of micro-expressions in video sequences. In: International Conference on Advances in Computing, Communications and Informatics, pp 699–703. https://doi.org/10.1109/ICACCI.2016.7732128 (2016)
Mohammadi, M.R., Fatemizadeh, E., Mahoor, M.H.: Pca-based dictionary building for accurate facial expression recognition via sparse representation. J. Vis. Commun. Image Represent. 25(5), 1082–1092 (2014). https://doi.org/10.1016/j.jvcir.2014.03.006
Ojala, T., Pietikäinen, M., Harwood, D.: A comparative study of texture measures with classification based on featured distributions. Pattern Recognit. 29(1), 51–59 (1996). https://doi.org/10.1016/0031-3203(95)00067-4
Owusu, E., Zhan, Y., Mao, Q.R.: An svm-adaboost facial expression recognition system. Appl. Intell. 40(3), 536–545 (2014)
Pu, X., Fan, K., Chen, X., Ji, L., Zhou, Z.: Facial expression recognition from image sequences using twofold random forest classifier. Neurocomputing 168(C), 1173–1180 (2015). https://doi.org/10.1016/j.neucom.2015.05.005
Rashid, M., Abu-Bakar, S., Mokji, M.: Human emotion recognition from videos using spatio-temporal and audio features. Vis. Comput. 29(12), 1269–1275 (2013)
Rivera, A.R., Castillo, J.R., Chae, O.: Local directional number pattern for face analysis: face and expression recognition. IEEE Trans. Image Process. 22(5), 1740–1752 (2013). https://doi.org/10.1109/TIP.2012.2235848
Shan, C., Gong, S., Mcowan, P.W.: Facial expression recognition based on local binary patterns: a comprehensive study. Image Vis. Comput. 27(6), 803–816 (2009). https://doi.org/10.1016/j.imavis.2008.08.005
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014)
Sutskever, I., Martens, J., Dahl, G., Hinton, G.: On the importance of initialization and momentum in deep learning. In: International Conference on Machine Learning, pp 1139–1147 (2013)
Uddin, M.Z., Hassan, M.M., Almogren, A., Zuair, M., Fortino, G., Torresen, J.: A facial expression recognition system using robust face features from depth videos and deep learning. Comput. Electr. Eng. 63, 114–125 (2017). https://doi.org/10.1016/j.compeleceng.2017.04.019
Wen, G., Hou, Z., Li, H., Li, D., Jiang, L., Xun, E.: Ensemble of deep neural networks with probability-based fusion for facial expression recognition. Cogn. Comput. 9(5), 597–610 (2017). https://doi.org/10.1007/s12559-017-9472-6
Yang, P., Liu, Q., Metaxas, D.N.: Boosting coded dynamic features for facial action units and facial expression recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, pp 1–6. https://doi.org/10.1109/CVPR.2007.383059 (2007)
Yu, Z., Liu, Q., Liu, G.: Deeper cascaded peak-piloted network for weak expression recognition. Vis. Comput. 34(12), 1691–1699 (2018). https://doi.org/10.1007/s00371-017-1443-0
Zeng, N., Zhang, H., Song, B., Liu, W., Li, Y., Dobaie, A.M.: Facial expression recognition via learning deep sparse autoencoders. Neurocomputing 273, 643–649 (2017). https://doi.org/10.1016/j.neucom.2017.08.043
Zhang, K., Huang, Y., Wu, H., Wang, L.: Facial smile detection based on deep learning features. In: 2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR). IEEE, pp 534–538 (2015)
Zhao, G., Pietikinen, M., Member, S.: Dynamic texture recognition using local binary patterns with an application to facial expressions. IEEE Trans. Pattern Anal. Mach. Intell. 29(6), 915–928 (2008). https://doi.org/10.1109/TPAMI.2007.1110