Fabrication of perfect plasmonic absorbers for blue and near-ultraviolet lights using double-layer wire-grid structures

Atsushi Motogaito1, Ryoma Tanaka1, Kazumasa Hiramatsu1
1Graduate School of Engineering, Mie University, 1577 Kurima-machiya-cho, Tsu, Japan

Tóm tắt

AbstractThis study proposes using double-layer wire-grid structures to create narrow-band, perfect plasmonic absorbers, which depend on polarization, for the short-wavelength visible and near-ultraviolet regions of the electromagnetic spectrum. A rigorous coupled-wave analysis reveals that the maximum absorption attained using Ag and Al is ~ 90% at 450 and 375 nm. Experiments using Ag yielded results similar to those predicted by simulations. These results demonstrate that narrow-band perfect plasmonic absorbers, which depend on the polarization, can be realized at 450 and 375 nm using Ag or Al.

Từ khóa


Tài liệu tham khảo

Tittl, A., Leitis, A., Liu, M., Yesilkoy, F., Choi, D.Y., Neshev, D.N., Yuri, S.K., Altug, H.: Imaging-based molecular barcoding with pixelated dielectric metasurfaces. Science. 360, 1105–1109 (2018). https://doi.org/10.1126/Science.aas9768

Ishikawa, A., Tanaka, T.: Metamaterial absorbers infrared detection of molecular self-assembled monolayers. Sci. Rep. 5(1), 12570 (2015). https://doi.org/10.1038/srep12570

Miwa, K., Ebihara, H., Fang, X., Kubo, W.: Photo-thermoelectric conversion of plasmonic nanohole array. Appl. Sci. 10(8), 2681 (2020). https://doi.org/10.3390/app10082681

Tong, J.K., Hsu, W.C., Huang, Y., Boriskina, S.V., Chen, G.: Thin-film ‘thermal wall’ emitters and absorbers for high-efficiency thermophotovoltaics. Sci. Rep. 5(1), 10661 (2015). https://doi.org/10.1038/srep10661

Rephaeli, E., Fan, S.: Absorber and emitter for solar thermophotovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit. Opt. Exp. 17(17), 15145–15159 (2009). https://doi.org/10.1364/OE.17.015145

Wu, D., Liu, C., Xu, Z., Liu, Y., Yu, L., Chen, L., Li, R., Ma, R., Ye, H.: The design of ultra-broadband selective near perfect absorber based on photonic structures to achieve near-ideal daytime radiative cooling. Mater. Des. 139, 104–111 (2018). https://doi.org/10.1016/j.matdes.2017.10.1077

Amemiya, K., Koshikawa, H., Imbe, M., Yamaki, T., Shitomi, H.: Perfect blackbody sheets from nano-percision microtextured elastomers for light and thermal radiation management. J. Mater. Chem. C. 7(18), 5418–5425 (2019). https://doi.org/10.1039/c8tc06593d

Rephaeli, E., Raman, A., Fan, S.: Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling. Nano Lett. 13(4), 1457–1461 (2013). https://doi.org/10.1021/nl4004283

Rustami, E., Sasagawa, K., Sugie, K., Ohta, Y., Haruta, M., Noda, T., Tokuda, T., Ohta, J.: Needle-type image sensor with band-pass composite emission filter and parallel fiber-coupled laser excitation. IEEE Trans. Circuits Syst.-I. 67(4), 1082–1091 (2020). https://doi.org/10.1109/TCSI.2019.2959592

Okamoto, K., Okura, K., Wang, P., Ryuzaki, S., Tamada, K.: Flexibly tunable surface plasmon resonance by strong mode coupling using a random metal nanohemisphere on mirror. Nanophotonics. 9(10), 3409–3418 (2020). https://doi.org/10.1515/nanaoph-2020-0118

Liang, C.J., Huang, K.Y., Hung, L.T., Su, C.Y.: Rapidly fabrication of plasmonic structural color thin films through AAO process in an alkaline solution. Surf. Coat. Technol. 319, 170–181 (2017). https://doi.org/10.1016/j.surfcoat.2017.04.011

Ellenbogen, T., Seo, K., Crozer, K.B.: Chromatic plasmonic polarizers for active visible color filtering and polarimetry. Nano Lett. 12(2), 1026–1031 (2012). https://doi.org/10.1021/nl204257g

Xu, T., Wu, Y.K., Luo, X., Guo, L.J.: Plasmonic nanoresonators for high resolution colour filtering and spectral imaging. Nat. Commun. 1(1), 59 (2010). https://doi.org/10.1038/ncomms1058

Yokogawa, S., Burgos, S., Atwater, H.A.: Plasmonic color filters for CMOS image sensor applications. Nano Lett. 12(8), 4349–4354 (2012). https://doi.org/10.1021/nl302110z

Chen, Q., Cumming, D.R.S.: High transmission and low color cross-talk plasmonic color filters using triangular-lattice hole arrays in aluminum films. Opt. Exp. 18(13), 14056–14062 (2010). https://doi.org/10.1364/OE.18.014056

Mazulquim, D.B., Lee, K.J., Yoon, J.W., Muniz, L.V., Borges, B.-H.V., Neto, L.G., Magnusson, R.: Efficient band-pass color filters enabled by resonant modes and plasmons near the Rayleigh anomaly. Opt. Exp. 22(25), 30843–30851 (2014). https://doi.org/10.1364/OE.22.030843

Tan, J., Wu, Z., Xu, K., Meng, Y., Jin, G., Wang, L., Wang, Y.: Numerical study an au-ZnO-Al absorber for a color filter with a high quality factor. Plasmonics. 15(1), 293–299 (2020). https://doi.org/10.1007/s11468-019-01047-z

Ghobadi, A., Hajian, H., Soydan, M.C., Butun, B., Ozbay, E.: Lithography-free planar band-pass reflective color filter using a series connection of cavities. Sci. Rep. 9(1), 220 (2019). https://doi.org/10.1038/s41598-018-36540-8

Li, W., Valentine, J.: Metamaterial perfect absorber based hot electron photodetection. Nano Lett. 14(6), 3510–3514 (2014). https://doi.org/10.1021/nl501090w

Zhao, X., Yang, Y., Wang, Y., Hao, Y., Chen, Z., Zhang, M.: Study of the converter based on photonic crystals filters and quantum dots for solar blind ultraviolet imaging system. Opt. Eng. 57(11), 117106 (2018). https://doi.org/10.1117/1.OE.57.11.117106

Hennesy, J., Jewell, A.D., Hoenk, M.E., Nikzad, S.: Metal-dielectric filters for solar-blind silicon ultraviolet detectors. Appl. Opt. 54(11), 3507–3512 (2015). https://doi.org/10.1364/AO.54.11.003507

Li, X., Xu, J.: Synthesis of CdS QDs with single cubic and hexagonal lattice for blue-light-blocking nanocomposite films with a narrow absorbing transitional band. Mater. Today Commun. 24, 101108 (2020). https://doi.org/10.1016/j.mtcomm.2020.101108

Liu, N., Mesch, M., Weiss, T., Hentschel, M., Giessen, H.: Infrared perfect absorber and its application as plasmonic sensor. Nano Lett. 10(7), 2342–2348 (2010). https://doi.org/10.1021/nl9041033

Ding, F., Jin, Y., Li, B., Cheng, H., Mo, L., He, S.: Ultrabroadband strong light absorption based on thin multilayered metamaterials. Laser Photon. Rev. 8(6), 946–953 (2014). https://doi.org/10.1002/lpor.201400157

Hao, J., Wang, J., Liu, X., Padilla, W.J., Zhou, L., Qiu, M.: High performance optical absorber based on a plasmonic metamaterial. Appl. Phys. Lett. 96(25), 251104 (2010). https://doi.org/10.1063/1.3442904

Ding, F., Yang, Y., Deshpande, R.A., Bozhevolnyi, S.I.: A review of gap-surface plasmon metasurfaces: fundamentals and applications. Nanophotonics. 7(6), 1129–1156 (2018). https://doi.org/10.1515/nanoph-2017-0125

Hu, J., Shen, M., Li, Z., Li, X., Liu, G., Wang, X., Kan, C., Li, Y.: Dual-channel extraordinary ultraviolet transmission through an aluminum nanohole array. Nanotechnology. 28(21), 215205 (2017). https://doi.org/10.1088/1361-6528/aa6a38

Li, W.D., Chou, S.Y.: Solar-blind deep-UV band filter (250-350 nm) consisting of a metal nano-grid fabricated by nanoimprint lithography. Opt. Exp. 18(2), 931–937 (2010). https://doi.org/10.1364/OE.18.000931

Jakšić, Z., Maksimović, M., Sarajlić, M., Tanasković, D.: Surface plasmon-polariton assisted metal-dielectric multilayers as passband filters for ultraviolet range. Acta Physica Polonica A. 112, 953–958 (2007). https://doi.org/10.12693/APhysPolA.112.953

Mu, J., Lin, P.T., Zhang, L., Michel, J., Kimerling, L.C., Jaworski, F., Agarwal, A.: Design and fabrication of a high transmissivity metal-dielectric ultraviolet band-pass filter. Appl. Phys. Lett. 102(21), 213105 (2013). https://doi.org/10.1063/1.4807925

Morsy, A.M., Povinelli, M.L., Hennessy, J.: Highly selective ultraviolet aluminum plasmonic filters on silicon. Opt. Exp. 26(18), 22650–22657 (2018). https://doi.org/10.1364/OE.26.022650

Gao, H., Peng, W., Cui, W., Chu, S., Yu, L., Yang, X.: Ultraviolet to near infrared titanium nitride broadband plasmonic absorber. Opt. Mater. 97, 109377 (2019). https://doi.org/10.1016/j.optmat.2019.109377

Ghobadi, A., Hajian, H., Butun, B., Ozbay, E.: Strong light-matter interaction in lithography-free planar metamaterial perfect absorbers. ACS Photonics. 5(11), 4203–4221 (2018). https://doi.org/10.1021/acsphotonics.8b00872

Hajian, H., Ghobadi, A., Butun, B., Ozbay, E.: Active metamaterial nearly perfect light absorbers: a review. J. Opt. Soc. Am. B. 36(8), F131–F143 (2019). https://doi.org/10.1364/JOSAB.36.00F131

Feng, L., Huo, P., Liang, Y., Xu, T.: Photonic metamaterial absorbers: morphology engineering and interdisciplinary applications. Adv. Mater. 32, 1903787 (2020). https://doi.org/10.1002/adma.201903787

Ng, C., Weswmann, L., Pachenko, E., Song, J., Davis, T.J., Roberts, A., Gómez, D.E.: Plasmonic near-complete optical absorption and its applications. Adv. Opt. Mater. 7(14), 1801660 (2018). https://doi.org/10.1002/adom.201801660

Motogaito, A., Morishita, Y., Miyake, H., Hiramatsu, K.: Extraordibary optical transmission exhibited by surface plasmon polaritons in a double-layer wire grid polarizer. Plasmonics. 10(6), 1657–1662 (2015). https://doi.org/10.1007/s11468-015-9980-8

Motogaito, A., Nakajima, T., Miyake, H., Hiramatsu, K.: Excitation mechanism of surface plasmon polaritons in a double-layer wire grid structure. Appl. Phys. A Mater. Sci. Process. 123(12), 729 (2017). https://doi.org/10.1007/s00339-017-1367-6

Motogaito, A., Mito, S., Miyake, H., Hiramatsu, K.: Detecting high-refractive-index media using surface plasmon sensor with one-dimensional metal diffraction grating. Opt. Photon. J. 6(07), 164–170 (2016). https://doi.org/10.4236/opj.2016.67018

Motogaito, A., Ito, Y.: Excitation mechanism of surface plasmon polaritons for surface plasmonsensor with 1D metal grating structure for high refractive index medium. Photon. Sens. 9(1), 11–18 (2019). https://doi.org/10.1007/s13320-018-0515-8

Motogaito, A., Watanabe, A.: Wave plate fabrication using surface plasmon polariton in a Ag wire grid structure. Technical digest on the 24th Microoptics Conference, pp. 250–251 (2019). https://doi.org/10.23919/MOC46630.2019.8982793

Khlopin, D., Laux, F., Wardley, W.P., Martin, J., Wurtz, G.A., Plain, J., Bonod, N., Zayats, A.V., Dickson, W., Gérard, D.: Lattice modes and plasmonic linewidth engineering in gold and aluminum nanoparticle arrays. J Opt. Soc. Am B. 34(3), 691–700 (2017). https://doi.org/10.1364/JOSAB.34.000691

Zhu, X., Hossain, G.M.I., George, M., Farhang, A., Cicek, A., Yanik, A.A.: Beyond noble metals: high Q-factor aluminum nanoplasmonics. ACS Photon. 7(2), 416–424 (2020). https://doi.org/10.1021/acsphotonics.9b01368

Gerasimov, V.S., Ershov, A.E., Bikbaev, R.G., Rasskazov, I.L., Isaev, I.L., Semina, P.N., Kostyukov, A.S., Zakomirnyi, V.I., Polyutov, S.P., Karpov, S.V.: Plasmonic lattice Kerker effect in ultraviolet-visible spectral range. Phys. Rev. B. 103(3), 035402 (2021). https://doi.org/10.1103/PhysRevB.103.035402

Gao, H., McMahon, J.M., Lee, M.H., Henzie, J., Gray, S.K., Schatz, G.C., Odom, T.W.: Rayleigh anomaly-surface plasmon polariton resonances in palladium and gold subwavelength hole arrays. Opt. Exp. 17(4), 2334–2340 (2009). https://doi.org/10.1364/OE.17.002334