Fabrication of nanoscale plasmonic structures and their applications to photonic devices and biosensors
Tóm tắt
Từ khóa
Tài liệu tham khảo
Homola J, Yee SS, Gauglitz G. Surface plasmon resonance sensors. Sensor Actuat B-Chem. 1999; 54(1–2):3–15.
Gao H, Henzie J, Odom TW. Direct evidence for surface plasmon-mediated enhanced light transmission through metallic nanohole arrays. Nano Lett. 2006; 6(9):2104–2108.
Lamprecht B, Krenn JR, Schider G, Ditlbacher H, Salerno M, Felidj N, Leitner A, Aussenegg FR. Surface plasmon propagation in microscale metal stripes. Appl Phys Lett. 2001; 79(1):51–53.
Ozbay E. Plasmonics: merging photonics and electronics at nanoscale dimensions. Science. 2006; 311(5758):189–193.
Hutter E, Fendler JH. Exploitation of localized surface plasmon resonance. Adv Mater. 2004; 16(19):1685–1706.
Daniel MC, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev. 2004; 104(1):293–346.
Xia Y, Halas NJ. Shape-controlled synthesis and surface plasmonic properties of metallic nanostructures. MRS Bull. 2005; 30(5), 338–348.
Haes AJ, Haynes CL, McFarland AD, Schatz GC, Van Duyne RP, Zou S. Plasmonic materials for surface-enhanced sensing and spectroscopy. MRS Bull. 2005; 30(5), 368–375.
Whitney AV, Elam JW, Zou S, Zinovev AV, Stair PC, Schatz GC, Van Duyne RP. Localized surface plasmon resonance nanosensor: a high-resolution distance-dependence study using atomic layer deposition. J Phys Chem B. 2005; 109(43):20522–20528.
Barnes WL. Surface plasmon-polariton length scales: a route to sub-wavelength optics. J Opt A: Pure Appl Opt. 2006; 8(4):S87–S93.
Barnes WL. Fluorescence near interfaces: the role of photonic mode density. J Mod Optic. 1998; 45(4):661–699.
Hoa XD, Kirk AG, Tabrizian M. Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress. Biosens Bioelectron. 2007; 23(2):151–160.
Prodan E, Radloff C, Halas NJ, Nordlander P. A hybridization model for the plasmon response of complex nanostructures. Science. 2003; 302(5644):419–422.
Shalaev VM, Botet R, Jullien R. Resonant light scattering by fractal clusters. Phys Rev B. 1991; 44(22):12216–12225.
Nie S, Emory SR. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science. 1997; 275(5303):1102–1106.
Wang S, Pile DFP, Sun C, Zhang X. Nanopin plasmonic resonator array and its optical properties. Nano Lett. 2007; 7(4):1076–1080.
Khoury M, Ferry DK. Effect of molecular weight on poly(methyl methacrylate) resolution. J Vac Sci Technol B. 1996; 14(1):75–79.
Tseng AA, Chen K, Chen CD, Ma KJ. Electron beam lithography in nanoscale fabrication: recent development. IEEE T Electr Pack. 2003; 26(2):141–149.
Barbillon G, Bijeon JL, Plain J, de la Chapelle ML, Adam PM, Royer P. Electron beam lithography designed chemical nanosensors based on localized surface plasmon resonance. Surf Sci. 2007; 601(21):5057–5061.
Hoa XD, Martin M, Jimenez A, Beauvais J, Charette P, Kirk A, Tabrizian M. Fabrication and characterization of patterned immobilization of quantum dots on metallic nano-gratings. Biosens Bioelectron. 2008; 24(4):970–975.
Cleary A, Clark A, Glidle A, Cooper JM, Cumming D. Fabrication of double split metallic nanorings for Raman sensing. Microelectron Eng. 2009; 86(4–6):1146–1149.
Stodolka J, Nau D, Frommberger M, Zanke C, Giessen H, Quandt E. Fabrication of two-dimensional hybrid photonic crystals utilizing electron beam lithography. Microelectron Eng. 2005; 78–79:442–447.
Jin M, Pully V, Otto C, van den Berg A, Carlen ET. High-density periodic arrays of self-aligned subwavelength nanopyramids for surface-enhanced Raman spectroscopy. J Phys Chem C. 2010; 114(50):21953–21959.
Koh AL, Fernández-Domínguez AI, McComb DW, Maier SA, Yang JKW. High-resolution mapping of electron-beam-excited plasmon modes in lithographically defined gold nanostructures. Nano Lett. 2011; 11(3):1323–1330.
Segawa H, Ueno K, Yokota Y, Misawa H, Yano T, Shibata S. Nano-patterning of a TiO2-organic hybrid material assisted by a localized surface plasmon. J Am Ceram Soc. 2010; 93(6):1634–1638.
Murazawa N, Ueno K, Mizeikis V, Juodkazis S, Misawa H. Spatially selective nonlinear photopolymerization induced by the near-field of surface plasmons localized on rectangular gold nanorods. J Phys Chem C. 2009; 113(4):1147–1149.
Ebbesen TW, Lezec HJ, Ghaemi HF, Thio T, Wolff PA. Extraordinary optical transmission through sub-wavelength hole arrays. Nature. 1998; 391:667–669.
Barnes WL, Murray WA, Dintinger J, Devaux E, Ebbesen TW. Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film. Phys Rev Lett. 2004; 92(10):107401.
Gao H, Henzie J, Odom TW. Direct evidence for surface plasmon-mediated enhanced light transmission through metallic nanohole arrays. Nano Lett. 2006; 6(9):2104–2108.
Watt F, Bettiol AA, Van Kan JA, Teo EJ, Breese MBH. Ion beam lithography and nanofabrication: a review. Int J Nanosci. 2005; 4(3):269–286.
Stewart ME, Anderton CR, Thompson LB, Maria J, Gray SK, Rogers JA, Nuzzo RG. Nanostructured plasmonic sensors. Chem Rev. 2008; 108(2):494–521.
Beermann J, Søndergaard T, Novikov SM, Bozhevolnyi SI, Devaux E, Ebbesen TW. Field enhancement and extraordinary optical transmission by tapered periodic slits in gold films. New J Phys. 2011; 13(6):063029.
Song Y, Elsayed-Ali HE. Aqueous phase Ag nanoparticles with controlled shapes fabricated by a modified nanosphere lithography and their optical properties. Appl Surf Sci. 2010; 256(20):5961–5967.
Haynes CL, Van Duyne. Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics. J Phys Chem B. 2001; 105(24):5599–5611.
Yonzon CR, Stuart DA, Zhang X, McFarland AD, Haynes CL, Van Duyne RP. Towards advanced chemical and biological nanosensors-an overview. Talanta. 2005; 67(3):438–448.
Lee FY, Fung KH, Tang TL, Tam WY, Chan CT. Fabrication of gold nano-particle arrays using two-dimensional templates from holographic lithography. Curr Appl Phys. 2009; 9(4):820–825.
Wang X, Xu J, Lee JCW, Pang YK, Tam WY, Chan CT, Sheng P. Realization of optical periodic quasicrystals using holographic lithography. Appl Phys Lett. 2006; 88(5):051901.
Schattenburg ML, Aucoin RJ, Fleming RC. Optically matched trilevel resist process for nanostructure fabrication. J Vac Sci Technol B. 1995; 13(6):3007–3011.
Romanato F, Kang HK, Lee KH, Ruffato G, Prasciolu M, Wong CC. Interferential lithography of 1D thin metallic sinusoidal gratings: accurate control of the profile for azimuthal angular dependent plasmonic effects and applications. Microelectron Eng. 2009; 86(4–6):573–576.
Sahoo PK, Vogelsang K, Schift H, Solak HH. Surface plasmon resonance in near-field coupled gold cylinder arrays fabricated by EUV-interference lithography and hot embossing. Appl Surf Sci. 2009; 256(2):431–434.
Boltasseva A. Plasmonic components fabrication via nanoimprint. J Opt A: Pure Appl Opt. 2009; 11(11):114001.
Hong SH, Bae BJ, Yang KY, Jeong JH, Kim HS, Lee H. Fabrication of sub-50 nm Au nanowires using thermally curing nanoimprint lithography. Electron Mater Lett. 2009; 5(4):139–143.
Fuchs A, Bender M, Plachetka U, Kock L, Koo N, Wahlbrink T, Kurz H. Lithography potentials of UV-nanoimprint. Curr Appl Phys. 2008; 8(6):669–674.
Guo LJ. Recent progress in nanoimprint technology and its applications. J Phys D: Appl Phys. 2004; 37(11):R123–R141.
Okamoto K, Niki I, Shvartser A, Narukawa Y, Mukai T, Scherer A. Surface-plasmon-enhanced light emitters based on InGaN quantum wells. Nat Mater. 2004; 3:601–605.
Okamoto K, Niki I, Scherer A, Narukawa Y, Mukai T, Kawakami Y. Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy. Appl Phys Lett. 2005; 87(7):071102.
Reboud V, Kehagias N, Zelsmann M, Schuster C, Fink M, Reuther F, Gruetzner G, Torres CMS. Photoluminescence enhancement in nanoimprinted photonic crystals and coupled surface plasmons. Opt Express. 2007; 15(12):7190–7195.
Gwon M, Lee E, Kim DW, Yee KJ, Lee MJ, Kim YS. Surfaceplasmon-enhanced visible-light emission of ZnO/Ag grating structures. Opt Express. 2011; 19(7):5895–5901.
Kang MG, Xu T, Park HJ, Luo X, Guo LJ. Efficiency enhancement of organic solar cells using transparent plasmonic Ag nanowire electrodes. Adv Mater. 2010; 22(39):4378–4383.
Zhao J, Zhang X, Yonzon CR, Haes AJ, Van Duyne RP. Localized surface plasmon resonance biosensors. Nanomedicine. 2006; 1(2):219–228.
Byun KM. Development of nanostructured plasmonic substrates for enhanced optical biosensing. J Opt Soc Korea. 2010; 14(2):65–76.
Byun KM, Jang SM, Kim SJ, Kim D. Effect of target localization on the sensitivity of a localized surface plasmon resonance biosensor based on subwavelength nanostructures. J Opt Soc Am A. 2009; 26(4):1027–1034.
Jang SM, Kim D, Choi SH, Byun KM, Kim SJ, Enhancement of localized surface plasmon resonance detection by incorporating metal-dielectric double-layered subwavelength gratings. Appl Opt. 2011; 50(18):2846–2854.
Kim NH, Jung WK, Byun KM. Correlation analysis between plasmon field distribution and sensitivity enhancement in reflection- and transmission-type localized surface plasmon resonance biosensors. Appl Opt. 2011. (To be published)
Lee SW, Lee KS, Ahn J, Lee JJ, Kim MG, Shin YB. Highly sensitive biosensing using arrays of plasmonic Au nanodisks realized by nanoimprint lithography. ACS Nano. 2011; 5(2):897–904.