Chế tạo cảm biến sợi nano bằng phương pháp điện sợi

Science China Technological Sciences - Tập 62 - Trang 886-894 - 2019
WeiHua Han1, YuZhi Wang1, JianMin Su1, Xin Xin2, YinDa Guo2, Yun-Ze Long2, Seeram Ramakrishna3
1Facility Horticulture Laboratory of Universities in Shandong, Weifang University of Science and Technology, Weifang, China
2College of Physics, Qingdao University, Qingdao, China
3Faculty of Engineering, National University of Singapore, Singlapore, Singapore

Tóm tắt

Bài báo này đã tổng hợp các kỹ thuật và ứng dụng của phương pháp điện sợi trong việc chế tạo cảm biến sợi nano. Xét đến việc cảm biến nano đòi hỏi một diện tích bề mặt riêng lớn và cấu trúc liên tục để dẫn truyền các tín hiệu dòng, sợi nano được tạo thành từ phương pháp điện sợi có ưu thế vượt trội. Quá trình chuẩn bị thiết bị chủ yếu được chia thành xử lý bề mặt và thiêu kết ở nhiệt độ cao, lần lượt được sử dụng để chuẩn bị các sợi dẫn điện composite và các sợi bán dẫn vô cơ. Các ứng dụng điển hình bao gồm cảm biến áp suất, cảm biến khí, cảm biến quang điện, và cảm biến nhiệt độ. Ngoài ra, các hệ thống tự cấp nguồn nano đã được đề cập để nhấn mạnh hiệu suất tốt của các hệ thống nano thông minh mà không cần nguồn điện bên ngoài. Thêm vào đó, chúng tôi đã tổng hợp một số phương pháp hiện có và gợi ý để tăng diện tích bề mặt riêng, đồng thời trình bày những ý tưởng xây dựng cho sự phát triển tương lai của những thiết bị này.

Từ khóa

#cảm biến sợi nano #điện sợi #diện tích bề mặt riêng #cảm biến áp suất #cảm biến khí #cảm biến quang điện #cảm biến nhiệt độ #hệ thống tự cấp nguồn nano

Tài liệu tham khảo

Cordero-Edwards K, Domingo N, Abdollahi A, et al. Ferroelectrics as smart mechanical materials. Adv Mater, 2017, 29: 1702210 Kim S H, Das M P. Understanding metamaterials in the realm of smart materials. Adv Mater, 2018, 2005: 020011 Bai W, Jiang Z, Ribbe A E, et al. Smart organic two-dimensional materials based on a rational combination of non-covalent interactions. Angew Chem Int Ed, 2016, 55: 10707–10711 Yu X, Cheng H, Zhang M, et al. Graphene-based smart materials. Nat Rev Mater, 2017, 2: 17046 Shen H, Li L, Xu D. Preparation of one-dimensional SnO2-In2O3 nano-heterostructures and their gas-sensing property. RSC Adv, 2017, 7: 33098–33105 You M H, Wang X X, Yan X, et al. A self-powered flexible hybrid piezoelectric-pyroelectric nanogenerator based on non-woven nanofiber membranes. J Mater Chem A, 2018, 6: 3500–3509 Pyo J Y, Cho W J. In-plane-gate a-IGZO thin-film transistor for highsensitivity pH sensor applications. Sens Actuat B-Chem, 2018, 276: 101–106 You M H, Yan X, Zhang J, et al. Colorimetric humidity sensors based on electrospun polyamide/CoCl2 nanofibrous membranes. Nanoscale Res Lett, 2017, 12: 360 Sui J X, Wang X X, Song C, et al. Preparation and low-temperature electrical and magnetic properties of La0.33Pr0.34Ca0.33MnO3 nanofibers via electrospinning. J Magn Magn Mater, 2018, 467: 74–81 Zhang J, Li S, Ju D D, et al. Flexible inorganic core-shell nanofibers endowed with tunable multicolor upconversion fluorescence for simultaneous monitoring dual drug delivery. Chem Eng J, 2018, 349: 554–561 Li S, Zhang J, Ju D D, et al. Flexible inorganic composite nanofibers with carboxyl modification for controllable drug delivery and enhanced optical monitoring functionality. Chem Eng J, 2018, 350: 645–652 Chen S, Long Y Z, Zhang H D, et al. Fabrication of ultrathin In2O3 hollow fibers for UV light sensing. Phys Scr, 2014, 89: 115808 Chen S, Yu M, Han W P, et al. Electrospun anatase TiO2 nanorods for flexible optoelectronic devices. RSC Adv, 2014, 4: 46152–46156 Zhang Z, Schwanz D, Narayanan B, et al. Perovskite nickelates as electric-field sensors in salt water. Nature, 2018, 553: 68–72 Wang X, Zhang Y, Zhang X, et al. A highly stretchable transparent self-powered triboelectric tactile sensor with metallized nanofibers for wearable electronics. Adv Mater, 2018, 30: 1706738 Han S T, Peng H, Sun Q, et al. An overview of the development of flexible sensors. Adv Mater, 2017, 29: 1700375 Fennimore A M, Yuzvinsky T D, Han W Q, et al. Rotational actuators based on carbon nanotubes. Nature, 2003, 424: 408–410 Haines C S, Lima M D, Li N, et al. Artificial muscles from fishing line and sewing thread. Science, 2014, 343: 868–872 Long Y Z, Li M M, Gu C, et al. Recent advances in synthesis, physical properties and applications of conducting polymer nanotubes and nanofibers. Prog Polymer Sci, 2011, 36: 1415–1442 Zhang Z G, Wang X X, Zhang J, et al. Recent advances in 1D micro- and nanoscale indium oxide structures. J Alloys Compd, 2018, 752: 359–375 Long Y Z, Duvail J L, Chen Z J, et al. Electrical properties of isolated poly(3,4-ethylenedioxythiophene) nanowires prepared by template synthesis. Polym Adv Technol, 2009, 20: 541–544 Yang H, Long Y Z, Ding H J Template-free synthesis and properties of polyaniline nanostructures doped with different oxidants. Nano-Scale Amourphous Mater, 2011, 688: 334 Long Y, Chen Z, Ma Y, et al. Electrical conductivity of hollow polyaniline microspheres synthesized by a self-assembly method. Appl Phys Lett, 2004, 84: 2205–2207 Liu L Z, Tian S B, Long Y Z, et al. Tunable periodic graphene antidot lattices fabricated by e-beam lithography and oxygen ion etching. Vacuum, 2014, 105: 21–25 Long Y, Zhang L, Ma Y, et al. Electrical conductivity of an individual polyaniline nanotube synthesized by a self-assembly method. Macromol Rapid Commun, 2003, 24: 938–942 He X X, Zheng J, Yu G F, et al. Near-field electrospinning: Progress and applications. J Phys Chem C, 2017, 121: 8663–8678 Si W Y, Zhang H D, Liu Y J, et al. Fabrication and pressure sensing analysis of ZnO/PVDF composite microfiber arrays by low-voltage near-field electrospinning. Chem J Chin Univ, 2017, 38: 997–1001 Zhang J, Wang X X, Zhang B, et al. In situ assembly of well-dispersed Ag nanoparticles throughout electrospun alginate nanofibers for monitoring human breath—smart fabrics. ACS Appl Mater Interfaces, 2018, 10: 19863–19870 Liu H, Zhang Z G, Wang X X, et al. Highly flexible Fe2O3/TiO2 composite nanofibers for photocatalysis and utraviolet detection. J Phys Chem Solids, 2018, 121: 236–246 Zhang H D, Liu Y J, Zhang J, et al. Electrospun ZnO/SiO2 hybrid nanofibers for flexible pressure sensor. J Phys D-Appl Phys, 2018, 51: 085102 Hu W P, Zhang B, Zhang J, et al. Ag/alginate nanofiber membrane for flexible electronic skin. Nanotechnology, 2017, 28: 445502 Yu G F, Yan X, Yu M, et al. Patterned, highly stretchable and conductive nanofibrous PANI/PVDF strain sensors based on electrospinning and in situ polymerization. Nanoscale, 2016, 8: 2944–2950 Zhang H D, Long Y Z, Li Z J, et al. Fabrication of comb-like ZnO nanostructures for room-temperature CO gas sensing application. Vacuum, 2014, 101: 113–117 Zhang H D, Yan X, Zhang Z H, et al. Electrospun PEDOT:PSS/PVP nanofibers for CO gas sensing with quartz crystal microbalance technique. Int J Polymer Sci, 2016, 2016: 1–6 Zhang H D, Tang C C, Long Y Z, et al. High-sensitivity gas sensors based on arranged polyaniline/PMMA composite fibers. Sens Actuat A-Phys, 2014, 219: 123–127 Sheng C H, Zhang H D, Chen S, et al. Fabrication, structural and humidity sensing properties of BaTiO3 nanofibers via electrospinning. Int J Mod Phys B, 2015, 29: 1550066 Zhang Q, Wang X, Fu J, et al. Electrospinning of ultrafine conducting polymer composite nanofibers with diameter less than 70 nm as high sensitive gas sensor. Materials, 2018, 11: 1744 Zhang H D, Yu M, Zhang J C, et al. Fabrication and photoelectric properties of La-doped p-type ZnO nanofibers and crossed p-n homojunctions by electrospinning. Nanoscale, 2015, 7: 10513–10518 Liu Y J, Zhang H D, Zhang J, et al. Effects of Ce doping and humidity on UV sensing properties of electrospun ZnO nanofibers. J Appl Phys, 2017, 122: 105102 Liu S, Liu S L, Long Y Z, et al. Fabrication of p-type ZnO nanofibers by electrospinning for field-effect and rectifying devices. Appl Phys Lett, 2014, 104: 042105 Liu X, Gu L, Zhang Q, et al. All-printable band-edge modulated ZnO nanowire photodetectors with ultra-high detectivity. Nat Commun, 2014, 5: 4007 Tong L, Wang X X, Zhu J W, et al. Conductive twisted polyimide composite nanofiber ropes with improved tensile strength, thermal stability and high flexibility. J Phys D-Appl Phys, 2018, 51: 485102 Zheng J, Yan X, Li M M, et al. Electrospun aligned fibrous arrays and twisted ropes: Fabrication, mechanical and electrical properties, and application in strain sensors. Nanoscale Res Lett, 2015, 10: 475 Guo W, Tan C, Shi K, et al. Wireless piezoelectric devices based on electrospun PVDF/BaTiO3 NW nanocomposite fibers for human motion monitoring. Nanoscale, 2018, 10: 17751–17760 Wang X, Song W Z, You M H, et al. Bionic single-electrode electronic skin unit based on piezoelectric nanogenerator. ACS Nano, 2018, 12: 8588–8596 Hao L, Wang R, Zhao Y, et al. The enzymatic actions of cellulase on periodate oxidized cotton fabrics. Cellulose, 2018, 25: 6759–6769 Wang R, Yang C, Fang K, et al. Removing the residual cellulase by graphene oxide to recycle the bio-polishing effluent for dyeing cotton fabrics. J Environ Manage, 2018, 207: 423–431 Kai W. Electrodeposition synthesis of PANI/MnO2/graphene composite materials and its electrochemical performance. Int J Electrochem Sci, 2017, 8306–8314 Wang K, Zhou S Z, Zhou Y T, et al. Synthesis of porous carbon by activation method and its electrochemical performance. Int J Electrochem Sci, 2018, 13: 10766–10773 Wang K, Pang J, Li L, et al. Synthesis of hydrophobic carbon nanotubes/ reduced graphene oxide composite films by flash light irradiation. Front Chem Sci Eng, 2018, 12: 376–382 Huang C, Chen S, Lai C, et al. Electrospun polymer nanofibres with small diameters. Nanotechnology, 2006, 17: 1558–1563 Yang R, He J, Xu L, et al. Bubble-electrospinning for fabricating nanofibers. Polymer, 2009, 50: 5846–5850 Jian S, Zhu J, Jiang S, et al. Nanofibers with diameter below one nanometer from electrospinning. RSC Adv, 2018, 8: 4794–4802 Fu J, Zhang J, Peng Y, et al. Wire-in-tube structure fabricated by single capillary electrospinning via nanoscale Kirkendall effect: The case of nickel-zinc ferrite. Nanoscale, 2013, 5: 12551–12557 Ji W, Wei H, Cui Y, et al. Facile synthesis of porous forsterite nanofibres by direct electrospinning method based on the Kirkendall effect. Mater Lett, 2018, 211: 319–322 Zhang Z, Yang G, Wei J, et al. Morphology and magnetic properties of CoFe2O4 nanocables fabricated by electrospinning based on the Kirkendall effect. J Cryst Growth, 2016, 445: 42–46 Zheng J, Sun B, Long Y Z, et al. Fabrication of nanofibers by low-voltage near-field electrospinning. Adv Mater Res, 2012, 486: 60–64 Zheng J, Long Y Z, Sun B, et al. Polymer nanofibers prepared by low-voltage near-field electrospinning. Chin Phys B, 2012, 21: 048102 Doergens A, Roether J A, Dippold D, et al. Identifying key processing parameters for the electrospinning of aligned polymer nanofibers. Mater Lett, 2015, 140: 99–102 García-López E, Olvera-Trejo D, Velásquez-García L F. 3D printed multiplexed electrospinning sources for large-scale production of aligned nanofiber mats with small diameter spread. Nanotechnology, 2017, 28: 425302 Afifi A M, Yamamoto M, Yamane H, et al. Electrospinning and characterization of aligned nanofibers from chitosan/polyvinyl alcohol mixtures: Comparison of several target devices newly designed. FIBER, 2011, 67: 103–108