Fabrication of nanocomposite membrane composed of sulfonated PVDF and thermo-mechanically modified fly ash for application in direct methanol fuel cells
Tóm tắt
The present work deals with the fabrication of cost-efficient nanocomposite proton exchange membrane (PEM), prepared by incorporation of nanoparticles of Fly Ash (FA) collected from M/s Bina thermal power plant Madhya Pradesh India; within the host PVDF [poly(vinylidene fluoride)] polymer matrix. Subsequently, the nanocomposite membranes are treated with the well-known sulfonating agent chlorosulfonic acid at 60˚C for 1.5 h. The successful incorporation of FA nanoparticles within the host polymer structure along with the sulfonation of the nanocomposite membranes was confirmed by using FTIR, XRD, FESEM-EDX, and AFM studies. The ion exchange capacity (IEC) and proton conductivity (PC) of nanocomposite membranes are observed to be 0.58 meq g−1 and 3.30 × 10−2 S cm−1 respectively. Further, it was interesting to note that the fabricated membranes exhibited enhanced water uptake capacity up to 19.6% with supressed methanol crossover (1.7 × 10−7cm2/s). Among all the fabricated membranes, the membrane SPF-5 (containing 5% w/w FA), exhibited significantly high membrane selectivity 1.94 × 105 Scm−3 s over corresponding Nafion-117 (2.47 × 104 Scm−3 s), which clearly indicates its potency towards an alternative to costly Nafion-117 for DMFCs (direct methanol fuel cells) application.
Tài liệu tham khảo
Neelakandan S, Rana D, Matsuura T, Muthumeenal A, Kanagaraj P, Nagendran A (2014) Fabrication and electrochemical properties of surface modified sulfonated poly(vinylidenefluoride-co-hexafluoropropylene) membranes for DMFC application. Solid State Ionics 268:35–41. https://doi.org/10.1016/j.ssi.2014.09.027
A. Uma Devi, A. Muthumeenal, R.M. Sabarathinam, A. Nagendran. Fabrication and electrochemical properties of SPVDF-co-HFP/SPES blend proton exchange membranes for direct methanol fuel cells. Renewable Energy. 102 Part A (2017), 258–265. https://doi.org/10.1016/j.renene.2016.10.060.
Prakash O, Jana KK, Manohar M, Shahi VK, Khan SA, Avasthi D, Maiti P (2019). Sustainable Energy Fuels. https://doi.org/10.1039/C8SE00631H
Rahayu I (2020) Akmalia Risalatul Umma, Juliandri, Yoga Trianzar Malik, Muhammad Nasir, Synthesis and characterization of sulfonated poly(vinylidene fluoride-co-hexafluoropropylene)/sAl2O3 composites as a novel-alternative electrolyte membranes of Nafion. Heliyon 6. https://doi.org/10.1016/j.heliyon.2020.e03159
Yadav V, Rajput A, Rathod NH, Kulshrestha V (2020) Enhancement in proton conductivity and methanol cross-over resistance by sulfonated boron nitride composite sulfonated poly (ether ether ketone) proton exchange membrane. Int J Hydrogen Energy 45:17017–17028. https://doi.org/10.1016/j.ijhydene.2019.06.091
Kumar P, Dutta K, Das S, Kundu PP (2014) An overview of unsolved deficiencies of direct methanol fuel cell technology, factors and parameters affecting its widespred use. Int J Energy Res 38:1367–1390. https://doi.org/10.1002/er.3163
Kumar P, Jagwani SK, Kundu PP (2014) Membrane prepared by incorporation of cross linked sulfonated polystyrene in THE blend of PVDF-co-HFP/Nafion: A preliminary evaluation for application in DMFC. Materials Today Communications. 2:e1–e8. https://doi.org/10.1016/j.mtcomm.2014.10.002
Yagizatli Y, Ulas B, Cali A, Sahin A, Ar I (2020) Improved fuel cell properties of Nano-TiO2 doped Poly(Vinylidene fluoride) and phosphonated Poly(Vinyl alcohol) composite blend membranes for PEM fuel cells. Int J Hydrogen Energy 45:35130–35138. https://doi.org/10.1016/j.ijhydene.2020.02.197
Das S, Kumar P, Dutta K (2014) Patit Paban Kundu, Partial sulfonation of PVdF-co-HFP: A preliminary study and characterization for application in direct methanol fuel cell. Appl Energy 113:169–177. https://doi.org/10.1016/j.apenergy.2013.07.030
Pal S, Mondal R, Chatterjee U (2021) Sulfonated poly vinylidene fluoride and functional copolymer based blend proton exchange membrane for fuel cell application and studies on methanol crossover. Renewable Energy 170:974–984. https://doi.org/10.1016/j.renene.2021.02.046
Linga L, Xiaoa M, Hanb D, Rena S, Wanga S, Menga Y (2019) Porous composite membrane of PVDF/Sulfonic silica with high ion selectivity for vanadium redox flow battery. J Membr Sci 585:230–237. https://doi.org/10.1016/j.memsci.2018.11.082
Singh HH, Singh S, Khare N (2018) Enhanced β-phase in PVDF polymer nanocomposite and its application for nanogenerator. Polm Adv Technol. 29:143–150. https://doi.org/10.1002/pat.4096
Cao X, Ma J, Shi X, Ren Z (2006) Effect of TiO2 nanoparticle size on the performance of PVDF membrane. Appl Surf Sci 253:2003–2010. https://doi.org/10.1016/j.apsusc.2006.03.090
Bottino A, Capannelli G, Comite A (2002) Preparation and characterization of novel porous PVDF-ZrO2 composite membranes. Desalination 146:35–40. https://doi.org/10.1016/S0011-9164(02)00469-1
Deivanayagam P, Sivasubramanian G, Hariharasubramanian K, Baskar B, Thangavelu SAG (2019) Energy material - the role of silicotungstic acid and fly ash in sulfonated poly (ether sulfone) composites for PEMFC applications, Journal of Macromolecular Science. Part -A Pure and Applied Chemistry 56:146–152. https://doi.org/10.1080/10601325.2018.1552080
Gandhimathi S, Krishnan H, Pardesi D, Jeyalakshmi R (2017) High Performance SPEEK/SWCNT/Fly Ash Polymer Electrolyte Nanocomposite Membranes for Fuel Cell Applications. Polym J 49:703–709. https://doi.org/10.1038/pj.2017.38
Safi Ur Rehman (2019) Muhammad Yaqub, Muhammad Noman, Babar Ali, Muhammad Nasir Ayaz Khan, Muhammad Fahad, Malik Muneeb Abid and Akhtar Gul, The Influence of Thermo-Mechanical Activation of Bentonite on the Mechanical and Durability Performance of Concrete. Appl Sci 9:5549. https://doi.org/10.3390/app9245549
Rath R, Kumar P, Unnikrishnan L, Mohanty S, Nayak SK (2021) Functionalized poly (vinylidene fluoride) for selective proton- conducting membranes. Material chemistry and Physics 260:124148. https://doi.org/10.1016/j.matchemphys.2020.124148
Garry NB (2007) Barona, Bong Jun Cha, Bumsuk Jung, Negatively charged poly(vinylidene fluoride) microfiltration membranes by sulfonation. J Membr Sci 290:46–54. https://doi.org/10.1016/j.memsci.2006.12.013
Simari C, Lufrano E, Lemes G (2021) María Jesús Lázaro, David Sebastián, and Isabella Nicotera, Electrochemical Performance and Alkaline Stability of Cross-linked Quaternized Polyepichlorohydrin/PvDF Blends for Anion-Exchange Membrane Fuel Cells. J Phys Chem C 125:5494–5504. https://doi.org/10.1021/acs.jpcc.0c11346
Pareek T, Dwivedi S (2020) Shadab Ali Ahmad, Manish Badole, Sunil Kumar, Effect of NASICON-type LiSnZr(PO4)3 ceramic filler on the ionic conductivity and electrochemical behavior of PVDF based composite electrolyte. J Alloy Compd 824:153991. https://doi.org/10.1016/j.jallcom.2020.153991
Liu G, Tsen W-C, Jang S-C, Fuqiang Hu, Zhong F, Zhang B, Wang J, Liu H, Wang G, Wen S, Gong C (2020) Composite membranes from quaternized chitosan reinforced with surface-functionalized PVDF electrospun nanofibers for alkaline direct methanol fuel cells. J Membr Sci 611. https://doi.org/10.1016/j.memsci.2020.118242
Cai X, Lei T, Sun D, Lin L (2017) A critical analysis of the α, β and γ phases in poly (vinylidene fluoride) using FTIR. RSC Adv 7:15382–15389. https://doi.org/10.1039/c7ra01267e
MK Tiwari, S Bajpai, UK Dewangan. Fly Ash Utilization: A Brief Review in Indian Context. International Research Journal of Engineering and Technology, Volume: 03 Issue: 04 - Apr-2016, e-ISSN: 2395 -0056, p-ISSN: 2395–0072
Kumar P, Singh AD, Kumar V, Kundu PP (2015) Incorporation of nano-Al2O3 within the blend of sulfonated-PVdF-co-HFP and Nafion for high temperature application in DMFCs. RSC Adv 5:6346. https://doi.org/10.1039/c5ra07992f
Lu X, Peng Y, Qiu H, Liu X, Ge L (2017) Anti-fouling membranes by manipulating surface wettability and their anti-fouling mechanism. Desalination 413:127–135. https://doi.org/10.1016/j.desal.2017.02.022
Zeng Z, Yu D, He Z, Liu J, Xiao FX, Zhang Y, Wang R, Bhattacharyya D, Tan TTY (2016) Graphene oxide quantum dots covalently functionalized PVDF membrane with significantly-enhanced bactericidal and antibiofouling performances. Sci Rep 6:1–11. https://doi.org/10.1038/srep20142
Farrokhzad H, Kikhavani T, Monnaie F, Ashrafizadeh SN, Koeckelberghs G, Van Gerven T, Van der Bruggen B (2015) Novel composite cation exchange films based on sulfonated PVDF for electromembrane separations. J Membr Sci 474:167–174. https://doi.org/10.1016/j.memsci.2014.10.002
Guan R, Zou H, Lu D, Gong Ch, Liu Y (2005) Polyethersulfone sulfonated by chlorosulfonic acid and its membrane characteristics. Eur Polym J 41:1554–1560. https://doi.org/10.1016/j.eurpolymj.2005.01.018
Richards GN (1964) Ion-exchange membranes by sulfonation of poly(vinylidene fluoride) films. J Appl Polym Sci 8:2269–2280. https://doi.org/10.1002/app.1964.07008053
Vempati RK, Rao A, Hess TR, Cocke DL, Lauer HV Jr (1994) Fractionation and characterization of texas lignite class 'F' fly ash by" XRD, TGA, FTIR and SFM. Cem Concr Res 24:1153–1164. https://doi.org/10.1016/0008-8846(94)90039-6
Mozgawa W, Krol M, Dyczek J, Deja J (2014) Investigation of the coal fly ashes using IR spectroscopy. Spectrochim ActaA Mol Biomol Spectrosc 132:889–894. https://doi.org/10.1016/j.saa.2014.05.052
Park CH, Lee CH, Guivera MD, Lee YM (2011) Sulfonated hydrocarbon membranes for medium- temperature and low-humidity proton exchange membrane fuel cells (PEMFCs). Prog Polym Sci 36:1443–1498. https://doi.org/10.1016/j.progpolymsci.2011.06.001
Hietala S, Holmberg S, Nasman J, Ostrovskii D, Paronen M, Serimaa R, Sundholm F, Torell L, Torkkeli M (1997) The state of water in styrene-grafted and sulfonated poly(vinylidene fluoride) membranes. Angew Makromol Chem 253:151–167. https://doi.org/10.1002/apmc.1997.052530112
Jiang R, Kunz HR, Fenton JM (2006) Composite silica/Nafion membranes prepared by tetraethylorthosilicate sol-gel reaction and solution casting for direct methanol fuel cells. J Membr Sci 272:116–124. https://doi.org/10.1016/j.memsci.2005.07.026
Chuang SW, Hsu SLC, Liu YH (2007) Synthesis and properties of fluorine-containing polybenzimidazole/silica nanocomposite membranes for proton exchange membrane fuel cells. J Membr Sci 305:353–363. https://doi.org/10.1016/j.memsci.2007.08.033
Govindarasu R, Somasundaram S (2020) Studies on influence of cell temperature in direct methanol fuel cell operation. Processes 8:353. https://doi.org/10.3390/pr8030353
Chen Y, Shah N, Huggins FE, Huffman GP (2005) Transmission Electron Microscopy Investigation of Ultrafine Coal Fly Ash Particles. Environ Sci Technol 39:1144–1151. https://doi.org/10.1021/es049871p
Paul KT, Satpathy SK, Manna I, Chakraborty KK (2007) Preparation and characterization of nano structured materials from fly ash: a waste from thermal power stations, by high energy ball milling. Nanoscale Res Lett 2:397–404. https://doi.org/10.1007/s11671-007-9074-4
Prakash O, Jana KK, Jain R, Shah P, Manohar M, Shahi VK, Maiti P (2018) Functionalized poly(vinylidene fluoride-co-hexafluoro propylene) membrane for fuel cell. Polymer 151:261–268. https://doi.org/10.1016/j.polymer.2018.07.086
Alberti G, Casciola M, Massinelli L, Bauer B (2001) Polymeric proton conducting membranes for medium temperature fuel cells (110–160◦C). J Membr Sci 185:73–81. https://doi.org/10.1016/S0376-7388(00)00635-9
Kumar P, Kundu PP (2015) Coating and lamination of Nafion117 with partially sulfonated PVdF for low methanol crossover in DMFC applications. Electrochim Acta 173:124–130. https://doi.org/10.1016/j.electacta.2015.05.044
Hickner MA (2010) Proton exchange membrane nanocomposites. ACS (Am Chem Soc) Symp Ser 1034:155–170. https://doi.org/10.1021/bk-2010-1034.ch011
Mishra AK, Bose S, Kuila T, Kim NH, Lee JH (2012) Silicate-based polymernanocomposite membranes for polymer electrolyte membrane fuel cells. Prog Polym Sci 37:842–869. https://doi.org/10.1016/j.progpolymsci.2011.11.002
Reyna-Valencia A, Kaliaguine S, Bousmina M (2005) Tensile Mechanical Properties of Sulfonated Poly(Ether Ether Ketone) (SPEEK) and BPO4/SPEEK Membranes. J Appl Polym Sci 98:2380–2393. https://doi.org/10.1002/app.22417
Narducci R, Vona MLD, Knauth P (2014) Cation-conducting ionomers made by ion exchange of sulfonated poly-ether-ether-ketone: Hydration, mechanical and thermal properties and ionic conductivity. J Membr Sci 465:185–192. https://doi.org/10.1016/j.memsci.2014.03.073
Heinzel A, Barrag´an VM (1999) Review of the state-of-the-art of the methanol crossover in direct methanol fuel cells. J Power Sources 84:70–74. https://doi.org/10.1016/S0378-7753(99)00302-X
Rath R, Kumar P, Unnikrishnan L, Mohanty S, Nayak SK (2019) Current scenario of poly (2,5-benzimidazole) (ABPBI) as prospective PEM for application in HTPEMFC. Polym Rev 60:267–317. https://doi.org/10.1080/15583724.2019.1663211
Uma Devi A, Divya K, Sri Abirami Saraswathi M, Rana D, Nagendran A (2018) Highly selective and methanol resistant polypyrrole laminated SPVdF-co-HFP/PWA proton exchange membranes for DMFC applications. Mater Chem Phys 212:533–542. https://doi.org/10.1016/j.matchemphys.2018.03.086
Neelakandan S, Kanagaraj P, Sabarathinam RM, Nagendran A (2015) Polypyrrole layered SPEES/TPA proton exchange membrane for direct methanol fuel cells. Appl Surf Sci 329:272–279. https://doi.org/10.1016/j.apsusc.2015.10.122
Xu D, Zhang G, Zhang N, Li H, Zhang Y, Shao K, Han M, Lew CM, Na H (2010) Surface modification of heteropoly acid/SPEEK membranes by polypyrrole with a sandwich structure for direct methanol fuel cells. J Mater Chem 20:9239–9245. https://doi.org/10.1039/c0jm02167a
Younga NP, Balsara NP, Equation F-H (2014). Encyclopedia of Polymeric Nanomaterials. https://doi.org/10.1007/978-3-642-36199-9_79-1
Flory PJ (1941) Thermodynamics of high polymer solutions. J Chem Phys 9:660
Huggins ML (1941) Solutions of long chain compounds. J Chem Phys 9:440