Fabrication of magnetic recoverable Fe3O4/TiO2 heterostructure for photocatalytic degradation of rhodamine B dye

Inorganic Chemistry Communications - Tập 145 - Trang 109966 - 2022
Ntakadzeni Madima1, Kebede K Kefeni1, Shivani B Mishra2, Ajay K Mishra2,3, Alex T Kuvarega1
1Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, Florida, Roodepoort, Johannesburg, 1709, South Africa
2Department of Medicine and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
3Department of Chemistry, Durban University of Technology, Steve Biko Road, 4001 Durban, South Africa

Tài liệu tham khảo

Nadimi, 2019, Photodegradation of methylene blue by a ternary magnetic TiO2/Fe3O4/graphene oxide nanocomposite under visible light, Mater. Chem. Phys., 225, 464, 10.1016/j.matchemphys.2018.11.029 Lin, 2018, Degradation of Acid Azo Dyes Using Oxone Activated by Cobalt Titanate Perovskite, Water Air, and Soil Pollution., 229, 10.1007/s11270-017-3648-2 Lum, 2020, Ash based nanocomposites for photocatalytic degradation of textile dye pollutants: A review, Mater. Chem. Phys., 241, 10.1016/j.matchemphys.2019.122405 Amiri, 2020, Purification of wastewater by the piezo-catalyst effect of PbTiO3 nanostructures under ultrasonic vibration, J. Hazard. Mater., 394, 122514, 10.1016/j.jhazmat.2020.122514 Zhao, 2018, Efficient decolorization of typical azo dyes using low-frequency ultrasound in presence of carbonate and hydrogen peroxide, J. Hazard. Mater., 346, 42, 10.1016/j.jhazmat.2017.12.009 Amiri, 2014, Cadmium selenide@sulfide nanoparticle composites: Facile precipitation preparation, characterization, and investigation of their photocatalyst activity, Mater. Sci. Semicond. Process., 27, 261, 10.1016/j.mssp.2014.06.020 Krishnamoorthy, 2018, Decolourisation and degradation of azo dyes by mixed fungal culture consisted of Dichotomomyces cejpii MRCH 1–2 and Phoma tropica MRCH 1–3, Journal of Environmental, Chem. Eng., 6, 588 Rawat, 2018, Ecotoxic potential of a presumably non-toxic azo dye, Ecotoxicol. Environ. Saf., 148, 528, 10.1016/j.ecoenv.2017.10.049 Chowdhury, 2018, Template-free hydrothermal synthesis of MgO-TiO2 microcubes toward high potential removal of toxic water pollutants, J. Phys. Chem. Solids, 112, 171, 10.1016/j.jpcs.2017.09.021 Parul, 2020, Photodegradation of organic pollutants using heterojunctions: A review, Journal of Environmental, Chem. Eng., 8, 103666 Ranjeh, 2020, Pechini sol-gel synthesis of Cu2O/Li3BO3 and CuO/Li3BO3 nanocomposites for visible light-driven photocatalytic degradation of dye pollutant, J. Alloy. Compd., 815, 10.1016/j.jallcom.2019.152451 Alshamsi, 2021, Porous hollow Ag/Ag2S/Ag3PO4 nanocomposites as highly efficient heterojunction photocatalysts for the removal of antibiotics under simulated sunlight irradiation, Chemosphere, 274, 10.1016/j.chemosphere.2021.129765 Beketova, 2020, One-Step Decoration of TiO2 Nanotubes with Fe3O4 Nanoparticles: Synthesis and Photocatalytic and Magnetic Properties, ACS Appl. Nano Mater., 3, 1553, 10.1021/acsanm.9b02337 Manoj, 2022, Tailoring the heterojunction of TiO2 with multivalence CeO2 nanocrystals - for detection of toxic 2-aminophenol, Food Chem. Toxicol., 165, 10.1016/j.fct.2022.113182 Rajendran, 2022, g-C3N4/TiO2/CuO S-scheme heterostructure photocatalysts for enhancing organic pollutant degradation, J. Phys. Chem. Solids, 161, 10.1016/j.jpcs.2021.110391 Dubey, 2021, Visible light induced photodegradation of chlorinated organic pollutants using highly efficient magnetic Fe3O4/TiO2 nanocomposite, Optik., 243, 10.1016/j.ijleo.2021.167309 Lendzion-Bieluń, 2020, Effective processes of phenol degradation on Fe3O4–TiO2 nanostructured magnetic photocatalyst, J. Phys. Chem. Solids, 136, 22, 10.1016/j.jpcs.2019.109178 Safajou, 2021, Green synthesis and characterization of RGO/Cu nanocomposites as photocatalytic degradation of organic pollutants in waste-water, Int. J. Hydrogen Energy, 46, 20534, 10.1016/j.ijhydene.2021.03.175 Manoj, 2019, Heterostructures of mesoporous TiO2 and SnO2 nanocatalyst for improved electrochemical oxidation ability of vitamin B6 in pharmaceutical tablets, J. Colloid Interface Sci., 542, 45, 10.1016/j.jcis.2019.01.118 Kermani, 2018, Catalytic ozonation of high concentrations of catechol over TiO2@Fe3O4 magnetic core-shell nanocatalyst: Optimization, toxicity and degradation pathway studies, J. Cleaner Prod., 192, 597, 10.1016/j.jclepro.2018.04.274 Rehman, 2021, Enhancing the photodegradation of phenol using Fe3O4/SiO2 binary nanocomposite mediated by silane agent, J. Phys. Chem. Solids, 153, 10.1016/j.jpcs.2021.110022 Narzary, 2020, Visible light active, magnetically retrievable Fe3O4@SiO2@g-C3N4/TiO2 nanocomposite as efficient photocatalyst for removal of dye pollutants, Journal of Environmental, Chem. Eng., 8, 104373 Brossault, 2021, Self-assembly of TiO2/Fe3O4/SiO2 microbeads: A green approach to produce magnetic photocatalysts, J. Colloid Interface Sci., 584, 779, 10.1016/j.jcis.2020.10.001 Zhang, 2020, A novel method for facile preparation of recoverable Fe3O4@TiO2 core-shell nanospheres and their advanced photocatalytic application, Chem. Phys. Lett., 761, 138073, 10.1016/j.cplett.2020.138073 Shi, 2020, Investigation of photocatalytic activity through photo-thermal heating enabled by Fe3O4/TiO2 composite under magnetic field, Sol. Energy, 196, 505, 10.1016/j.solener.2019.12.053 Tang, 2020, Preparation of TiO2/Fe3O4 composite by sol-gel method and its photocatalytic activity for removal of Rhodamine B from water, Ferroelectrics, 562, 66, 10.1080/00150193.2020.1760594 Lee, 2022, Magnetically sensitive TiO2 hollow sphere/Fe3O4 core-shell hybrid catalyst for high-performance sunlight-assisted photocatalytic degradation of aqueous antibiotic pollutants, J. Alloy. Compd., 902, 10.1016/j.jallcom.2022.163612 Gnanasekaran, 2019, Nanosized Fe3O4 incorporated on a TiO2 surface for the enhanced photocatalytic degradation of organic pollutants, J. Mol. Liq., 287, 2, 10.1016/j.molliq.2019.110967 Kalantari, 2020, Catalytic degradation of organic dyes using green synthesized Fe3O4-cellulose-copper nanocomposites, J. Mol. Struct., 1218, 10.1016/j.molstruc.2020.128488 Kataria, 2018, Green synthesis of Fe3O4 nanoparticles loaded sawdust carbon for cadmium (II) removal from water: Regeneration and mechanism, Chemosphere, 208, 818, 10.1016/j.chemosphere.2018.06.022 Darezereshki, 2022, Methylene Blue Degradation Over Green Fe3O4 Nanocatalyst Fabricated Using Leaf Extract of Rosmarinus officinalis, Top. Catal., 10.1007/s11244-021-01524-y Goutam, 2018, Green synthesis of TiO2 nanoparticles using leaf extract of Jatropha curcas L. for photocatalytic degradation of tannery wastewater, Chem. Eng. J., 336, 386, 10.1016/j.cej.2017.12.029 Sampath Kumar, 2021, Extraction of bioactive compounds from Psidium guajava leaves and its utilization in preparation of jellies, AMB Express., 11, 10.1186/s13568-021-01194-9 P. Somchaidee, K. Tedsree, Green synthesis of high dispersion and narrow size distribution of zero-valent iron nanoparticles using guava leaf (Psidium guajava L) extract, Adv. Nat. Sci. Nanosci. Nanotechnol. 9 (2018). https://doi.org/10.1088/2043-6254/aad5d7. V.A. Amaral, T.F.R. Alves, J.F. de Souza, F. Batain, K.M. de M. Crescencio, V.S. Soeiro, C.T. de Barros, M.V. Chaud, Phenolic compounds from Psidium guajava (Linn.) leaves: Effect of the extraction-assisted method upon total phenolics content and antioxidant activity, Biointerface Res. Appl. Chem. 11 (2021) 9346–9357. https://doi.org/10.33263/BRIAC112.93469357. Chu, 2021, Magnetic Fe3O4@TiO2nanocomposites to degrade bisphenol A, one emerging contaminant, under visible and long wavelength UV light irradiation, J. Environ. Chem. Eng., 9, 105539, 10.1016/j.jece.2021.105539 Zhang, 2019, An efficient approach for the synthesis of magnetic separable Fe3O4@TiO2 core-shell nanocomposites and its magnetic and photocatalytic performances, Mater. Res. Express, 6, 105014, 10.1088/2053-1591/ab3531 Rani, 2020, Influence of anionic and non-ionic surfactants on the synthesis of core-shell Fe3O4@TiO2 nanocomposite synthesized by hydrothermal method, Ceram. Int., 46, 23516, 10.1016/j.ceramint.2020.06.122 Deng, 2019, Well-dispersed TiO 2 nanoparticles anchored on Fe 3 O 4 magnetic nanosheets for efficient arsenic removal, J. Environ. Manage., 237, 63, 10.1016/j.jenvman.2019.02.037 Zhang, 2017, Preparation of Fe3O4/TiO2 magnetic mesoporous composites for photocatalytic degradation of organic pollutants, Water Sci. Technol., 75, 1523, 10.2166/wst.2017.002 Vinothkannan, 2015, One-pot green synthesis of reduced graphene oxide (RGO)/Fe3O4 nanocomposites and its catalytic activity toward methylene blue dye degradation, Spectrochim. Acta - Part A Mol. Biomol. Spectroscopy., 136, 256, 10.1016/j.saa.2014.09.031 Prasad, 2017, Bio inspired green synthesis of Ni/Fe3O4magnetic nanoparticles using Moringa oleifera leaves extract: A magnetically recoverable catalyst for organic dye degradation in aqueous solution, J. Alloy. Compd., 700, 252, 10.1016/j.jallcom.2016.12.363 Khashan, 2017, Novel method for synthesis of Fe3O4@TiO2 core/shell nanoparticles, Surf. Coat. Technol., 322, 92, 10.1016/j.surfcoat.2017.05.045 Chen, 2018, Preparation and characterization of the magnetic Fe3O4@TiO2 nanocomposite with the in-situ synthesis coating method, Mater. Chem. Phys., 216, 496, 10.1016/j.matchemphys.2018.06.037 Salamat, 2017, Synthesis of magnetic core-shell Fe3O4@TiO2 nanoparticles from electric arc furnace dust for photocatalytic degradation of steel mill wastewater, RSC Adv., 7, 19391, 10.1039/C7RA01238A Boruah, 2020, Dual responsive magnetic Fe3O4-TiO2/graphene nanocomposite as an artificial nanozyme for the colorimetric detection and photodegradation of pesticide in an aqueous medium, J. Hazard. Mater., 385, 10.1016/j.jhazmat.2019.121516 Dobaradaran, 2018, Catalytic decomposition of 2-chlorophenol using an ultrasonic-assisted Fe3O4–TiO2@MWCNT system: Influence factors, pathway and mechanism study, J. Colloid Interface Sci., 512, 172, 10.1016/j.jcis.2017.10.015 Shi, 2018, Recyclable photo-thermal conversion and purification systems via Fe3O4@TiO2 nanoparticles, Energy Convers. Manage., 171, 272, 10.1016/j.enconman.2018.05.106 Chen, 2016, Magnetically separable Fe3O4@TiO2 nanospheres: preparation and photocatalytic activity, J. Mater. Sci.: Mater. Electron., 27, 9983 Rafieezadeh, 2022, Fabrication of heterojunction ternary Fe3O4/TiO2/CoMoO4 as a magnetic photocatalyst for organic dyes degradation under sunlight irradiation, J. Photochem. Photobiol., A, 423, 10.1016/j.jphotochem.2021.113596 Bilgic, 2022, Fabrication of monoBODIPY-functionalized Fe3O4@SiO2@TiO2 nanoparticles for the photocatalytic degradation of rhodamine B under UV irradiation and the detection and removal of Cu(II) ions in aqueous solutions, J. Alloy. Compd., 899, 10.1016/j.jallcom.2021.163360 Ghafuri, 2019, Synthesis and characterization of magnetic nanocomposite Fe3O4@TiO2/Ag, Cu and investigation of photocatalytic activity by degradation of rhodamine B (RhB) under visible light irradiation, Optik., 179, 646, 10.1016/j.ijleo.2018.10.180 Zyoud, 2020, Removal of acetaminophen from water by simulated solar light photodegradation with ZnO and TiO2nanoparticles: Catalytic efficiency assessment for future prospects, J. Environ. Chem. Eng., 8, 104038, 10.1016/j.jece.2020.104038 Sheikhmohammadi, 2021, Ultrasound-assisted decomposition of metronidazole by synthesized TiO2/Fe3O4 nanocatalyst: Influencing factors and mechanisms, J. Environ. Chem. Eng., 9, 105844, 10.1016/j.jece.2021.105844 A. Xie, J. Dai, X. Chen, J. He, Z. Chang, Y. Yan, C. Li, Electronic Supplementary Material (ESI) for RSC Advances . This journal is © The Royal Society of Chemistry 2016, (2016) 1–6. Motamedi, 2022, Recent developments in photocatalysis of industrial effluents: A review and example of phenolic compounds degradation, Chemosphere, 296, 10.1016/j.chemosphere.2022.133688 Rafieezadeh, 2021, Synthesis and characterization of the magnetic submicrocube Fe3O4/TiO2/CuO as a reusable photocatalyst for the degradation of dyes under sunlight irradiation, Environ. Technol. Innov., 23, 10.1016/j.eti.2021.101756