Chế tạo tế bào năng lượng mặt trời cảm quang nhuộm hiệu suất cao và tiết kiệm chi phí bằng cách sử dụng nanocomposite ZnO/MWCNT làm photoanode

Springer Science and Business Media LLC - Tập 27 - Trang 183-194 - 2022
S. Vijayanath1, K. Janaki2, Ramalingam Gopal3, C. Ragupathi4, Baskaran Rangasamy5, Mohammed Mujahid Alam
1Department of Physics, Dhirajlal Gandhi College of Technology, Salem, India
2Department of Physics, Government Arts College for Women, Salem, India
3Department of Nanoscience and Technology, Science Campus, Alagappa University, Karaikudi, India
4Department of Chemistry, Sriram College of Arts and Science, Perumalpattu, Tiruvallur, India
5Energy Storage Materials and Devices Lab, Department of Physics, School of Mathematics and Natural Sciences, The Copperbelt University, Riverside, Kitwe, Zambia

Tóm tắt

Trong nghiên cứu hiện tại, một cấu hình tiết kiệm chi phí và hiệu quả mới của tế bào năng lượng mặt trời cảm quang nhuộm (DSSC) với composite oxide kẽm–nanotube carbon nhiều lớp (ZnO-MWCNT) đã được chế tạo. Các hạt nanoparticle ZnO được tổng hợp bằng phương pháp hỗ trợ bức xạ vi sóng và sau đó được nghiền với MWCNT đã qua xử lý với axit ở các nồng độ khác nhau. Các nanocomposite ZnO/MWCNT cùng với thuốc nhuộm N719 được sử dụng làm photoanode trong khi Pt được sử dụng làm điện cực đối kháng để chế tạo các thiết bị DSSC. Kết quả XRD xác nhận sự tồn tại của các hạt nanoparticle ZnO nhiều tinh thể, trong khi phân tích SEM và TEM cho thấy sự hình thành đồng nhất của các nanocomposite ZnO/MWCNT với các hạt nanoparticle ZnO có kích thước từ 10 đến 20 nm. Kết quả EDS xác nhận sự hiện diện của Zn, O và C, trong khi FTIR xác nhận các tương tác giữa ZnO và MWCNT. Phân tích quang phổ UV–đối với ánh sáng cho thấy sự giảm năng lượng băng giữa với sự tăng nồng độ MWCNT, trong khi kết quả PL chỉ ra sự ức chế quá trình tái tổ hợp cặp electron–lỗ trống. Các điều tra photovoltaic cho thấy photoanode ZnO/MWCNT (0.5) mang lại hiệu suất chuyển đổi quang điện (PCE) cao là 8.85%, tốt hơn 3.85 lần so với ZnO trống (2.32%). Nghiên cứu về điện hóa cũng tiết lộ rằng điện cực composite thể hiện hoạt động xúc tác cao và thời gian sống electron dài. Hiệu suất chuyển đổi quang điện cao theo kích thước lỗ, hiệu suất chuyển đổi photon tới điện và chất lượng hấp thụ quang đã được thảo luận.

Từ khóa

#tế bào năng lượng mặt trời #cảm quang nhuộm #ZnO #MWCNT #hiệu suất chuyển đổi quang điện #composite

Tài liệu tham khảo

Grätzel M (2004) Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells, J. Photochem. Photobiol A 164:3–14 Kim HY, Lee MW, Song DH, Yoon HJ, Suh JS (2017) Design and fabrication of RGO/WO3 as a novel photoanode for high efficient dye-sensitized solar cells. J Appl Phys 121:43103 Bella F, Gerbaldi C, BaroloC GM (2015) Aqueous dye-sensitized solar cells. Chem Soc Rev 44(2015):3431–3473 Oregan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740 Grätzel M (2005) Solar energy conversion by dye-sensitized photovoltaic cells. Inorg Chem 44:6841–6851 Kim H, Choi H, Hwang S, KimY JM (2012) Fabrication and characterization of carbon-based counter electrodes prepared by electrophoretic deposition for dye-sensitized solar cells. Nano Res Lett 7:5310 Yun S, Hagfeldt A, Ma T (2014) Pt-free counter electrode for dye-sensitized solar cells with high efficiency Adv. Mater 26:6210–6237 Wu CY, Li GR, Cao XQ, Lei B, Gao XP (2017) Carbon nitride transparent counter electrode prepared by magnetron sputtering for a dye-sensitized solar cell, Green Eng. Env 2:302–309 Siwach B, Mohan D, Sharma S, Jyoti D (2017) Process optimization of dye-sensitized solar cells using TiO2TiO2–graphene nanocomposites Bull. Mater Sci 40:1371–1377 Liu X, Fang J, Liu Y, Lin T (2016) Progress in nanostructured photoanodes for dye-sensitized solar cells Front. Mater Sci 10:225–237 Han J, Kim H, Kim DY, Jo SM, Jang SY (2010) Water-soluble polyelectrolyte-grafted multiwalled carbon nanotube thin films for efficient counter electrode of dye-sensitized solar cells. ACS Nano 4:3503–3509 Yeoh ME, Chan KY (2017) Recent advances in photo-anode for dye-sensitized solar cells: a review Int. J Energy Res 41:2446–2467 Zhang BQ, Dandeneau CS, Zhou X, Cao G (2009) ZnO nanostructures for dye-sensitized solar cells Adv. Mater 21:4087 Tang H, Prasad K, Sanjines R, Schmid PE, Levy F (1994) Electrical and optical properties of TiO2 anatase thin films. J Appl Phys 75:2042 Ozgur U, Alivov YI, Liu C, Teke A, Reshchikov MA, Dogan S, Avrutin V, Cho SJ, Morkoc H (2015) A comprehensive review of ZnO materials and devices. J Appl Phys 98:041301 Xu F, Sun L (2011) Solution-derived ZnO nanostructures for photoanodes of dye-sensitized solar cells Ener. Environ Sci 4:818 Habibi MH, Mikhak M, Zendehdel M, Habibi M (2012) Influence of nanostructured zinc titanate, zinc oxide or titanium dioxide thin film coated on fluorine doped tin oxide as working electrodes for dye-sensitized solar cell Int. J Electrochem Sci 7:6787 Zeng G, Nian K, Lee K (2010) Characteristics of a dye-sensitized solar cell based on an anode combining ZnO nanostructures with vertically aligned carbon nanotubes DiamondRelat. Mater 19:1457 Wei D, Unalan HE, Han D, Zhang Q, Niu L, Amaratunga G, Ryhanen T (2008) A solid-state dye-sensitized solar cell based on a novel ionic liquid gel and ZnO nanoparticles on a flexible polymer substrate. Nanotech 19:4424006 Liu J, Rinzler AG, Dai H, Hafner JH, Bradley RK, Boul PJ, Lu A, Iverson T, Shelimov K, Huffman CB, Rodriguez-Macias F, Shon YS, Lee TR, Colbert RE (1998) Fullerene pipes Smalley. Science 280:1253 Deshmukh PR, Youngku S, Weon GS (2017) Chemical synthesis of ZnO nanorods: Investigations of electrochemical performance and photo-electrochemical water splitting applications. J Alloys Compd 711: 573–580 Tian F, Wu Z, Chen Q, Yan Y, Cravotto G, Wu Z (2015) Microwave-induced crystallization of AC/TiO for improving the performance of rhodamine B dye degradation. Appl Surf Sci 351: 104–112 Liu F, Zhang XB, Haussler D, Jager W, Yi GF, Cheng JP, Tao XY, Luo ZQ, Zhou SM (2006) TEM characterization of metal and metal oxide particles supported by multi-wall carbon nano tubes. J Mater Sci 41:4523 Yu J, Ma T, Liu S (2011) Enhanced photocatalytic activity of mesoporous TiO2 aggregates by embedding carbon nanotubes as electron-transfer channel. Phys Chem Chem Phys 13:3491–3501 Aliyu S, Abdullah H, Abbas Z (2014) Solid state characterization of Cu-ZnO nanocomposite synthesised via micro-wave irradiation. Int J Eng Sci 3:47–53 Xiong G, Pal U, Serrano J, Ucer K, Williams R (2006) Photoluminesence and FTIR study of ZnO nanoparticles: the impurity and defect perspective. Phys Status Solidi C 3:3577–3581 Zhang H, Chen B, Jiang H, Wang C, Wang H, Wang X (2011) A strategy for ZnO nanorod mediated multi-mode cancer treatment. Biomaterials 32:1906–1914 Saboor A, Shah SM, Hussain H (2019) Band gap tuning and applications of ZnO nanorods in hybrid solar cell: Ag-doped verses Nd-doped ZnO nanorods. Mater Sci Semicond Process 93:215–225 Saleh TA, Gonda M, Drmosh Q (2010) Preparation of a MWCNT/ZnO nanocomposite and its photocatalytic activity for the removal of cyanide from water using a laser. Nanotechnology 21:495705–495712 Akhavan O, Azimirad R, Safad S, Larijani MM (2010) Visible light photo-induced antibacterial activity of CNT–doped TiO2 thin films with various CNT contents. J Mater Chem 20:7386–7392 Kislov N, Srinivasan SS, Emirov Y, Stefanakos EK (2008) Optical absorption red and blue shifts in ZnFe2O4 nanoparticles. Mater Sci Eng B 153:7–77 Visinescu D, Jurca B, Lanculescu A, Carp O (2011) Starch – A suitable fuel in new low-temperature combustion-based synthesis of zinc aluminate oxides. Polyhedron 30:2824–2831 Revaprasadu N, Mlondo SN (2006) Use of metal complexes to synthesize semiconductor nanoparticles. Pure Appl Chem 78:1691 Li C, Fang G, Fu Q, Su F, Li G, Wu XZ, Zhao X (2006) Effect of substrate temperature on the growth and photoluminescence properties of vertically aligned ZnO nanostructures. J Crystal Growth 292:19–25 Ahsanulhaq Q, Umar A, Hahn YB (2007) Growth of aligned ZnO nanorods and nanopencils on ZnO/Si in aqueous solution: growth mechanism and structural and optical properties. Nanotechnology 18:115603–115609 Sun Y, Ndifor-Angwafor NG, Riley DJ, Ashfold MNR (2006) Synthesis and photoluminescence of ultra-thin ZnO nanowire/nanotube arrays formed by hydrothermal growth. Chem Phys Lett 431:352–357 Monticone S, Tufeu R, Kanaev AV (1998) Complex nature of the UV and visible fluorescence of colloidal ZnO nanoparticles. J Phys Chem B 102:2854–2862 Parthibavarman M, Sathishkumar S, Prabhakaran S, Jayash ree M, BoopathiRaja R (2018) High visible light-driven photocatalytic activity of large surface area Cu doped SnO2 nanorods synthesized by novel one-step microwave irradiation method. J Iran Chem Soc 15:2789–2801 Ai L, Zhang C, Chen Z (2011) Removal of methylene blue from aqueous solution by a solvothermal-synthesized graphene/magnetite composite. J Hazard Mater 192:1515–1524 Wang B et al (2011) In situ synthesis of Co3O4/graphene nanocomposite material for lithium-ion batteries and supercapacitors with high capacity and supercapacitance. J Alloy Compd 509:7778–7783 Singhal RK, Dhawan MS, Gaur SK, Dolia SN, Kumar S, Shripathi T, Deshpande UP, XingYT SE, Garg KB (2009) Room temperatureferromagnetism in Mn-doped dilute ZnO semiconductor: an electronic structure study using X-ray photoemission. J Alloy Compd 477:379–385 Sabeeh SZ, Saif M, Alshrefi WR, Saleh DM, K, (2019) n-Si/ZnO/Se/MWCNTs nanocomposite- 7% efficiency, “I-V characteristics of n-Si /ZnO/Se/MWCNTs nanocomposite solar cell fabricated by solvothermal technique.” AIP Conf Proc 2190:020085 Chem JW, Chew JW, Khanmirzaei MH, Numan A, Saiha Omar F, Ramesh K, Ramesh S (2018) Performance studies of ZnO and multi walled carbon nanotubes-based counter electrodes with gel polymer electrolyte for dye-sensitized solar cell. Mater Sci Semi Proces 83:144–149 Bulkesh S, Sunita S, Devendra M (2017) Structural, optical and morphological properties of ZnO/MWCNTs nanocomposite photoanodes for Dye Sensitized Solar Cell (DSSC) Application. J Integr Sci Technol 5:1–4 Aseena S, Nelsa Abraham V, Babu S, Beena S, Aseena S (2022) Effect of carbon nanotube content in ZnO/carbon nanotube based photoanode for dye sensitized solar cells. ecs j solid state Sci Technol 11:E061011 Younas M, Gondal MA, Dastageer MA, Harrabi K (2019) Efficient and cost-effective dye-sensitized solar cells using MWCNT-TiO2 nanocomposite as photoanode and MWCNT as Pt-free counter electrode. Sol Energy 188:1178–1188 Ramar A, Soundappan T, Chen S-M, Rajkumar M, Ramiah S (2012) Incorporation of multi-walled carbon nanotubes in ZnO for dye sensitized solar cellS. Int J Electrochem Sci 7:11734–11744 Chindaduang A, Duangkaew P, Pratontep S, Tumcharern G (2009) Effects of multi-walled carbon nanotube incorporation in ZnO photoelectrode on the efficiency of dye-sensitized solar cells. NU Science Journal 6(S1):28–35 Kern R, Sastrawan R , Ferber J, Stangl R (2002) Modeling and interpretation of electrical impedance spectra of dye solar cells operated under open-circuit conditions. J Luther Electrochim Acta 47:4213 Gopal R, Chinnapan MM, Bojarajan A (2020) Facile synthesis and defect optimization of 2D-layered MoS2 on TiO2 heterostructure for industrial effluent, wastewater treatments. Sci Rep 10:21625 Arjunkumar B, Ramalingam G (2020) Investigation of uni-directional nanorods composed microspheres and branched TiO nanorods towards solar cell application. Matt Lett 273:127900 Wibowo A, Marsudi MA, Amal MI, Ananda MB, Stephanie R, Jaya Diguna HRL (2020) ZnO nanostructured materials for emerging solar cell applications. RSC Adv 10:42838 Areerob Y, Hamontree C, Sricharoen P (2022) Synthesis of novel MoWO4 with ZnO nanoflowers on multi-walled carbon nanotubes for counter electrode application in dye-sensitized solar cells. Sci Rep 12:12490 Mahalingam S, Low F W, Omar A, Manap A, Abd Rahim N, Tan CH, Abdullah H, Voon CH, Rokhmat M, Wibowo E, Oon CS (2022) Zinc oxide/graphene nanocomposite as efficient photoelectrode in dye-sensitized solar cells: recent advances and future outlook. InterJ Ener Res 46:12