Fabrication of heterostructure NiO/ZnO thin film for pseudocapacitor application

Journal of Sol-Gel Science and Technology - Tập 104 - Trang 198-210 - 2022
G. Vijaya Prasath1,2,3, K. S. Usha4, M. Karuppaiah2, G. Ravi2, P. Krishnan5
1PG & Research, Department of Physics, Sree Sevugan Annamalai College, Devakottai, India
2Department of Physics, Alagappa University, Karaikudi, India
3Materials Electrochemistry Division (MED), CSIR-CECRI, Karaikudi, India
4Department of Physics, Bannari Amman Institute of Technology, Sathyamangalam, India
5St. Joseph’s College of Engineering, Chennai, India

Tóm tắt

An ordered NiO/ZnO heterojunction electrochemical electrode was prepared on an FTO substrate by using the spin-coating method. XRD patterns confirmed the ZnO NRs of varying lengths and NiO NPs of varying sizes are grown in the same manner as hexagonal wurtzite and cubic crystal structures, respectively. An important outcome is that both the crystal structures are fused together as a heterostructure film. Almost all Zn, Ni and O atoms primarily involved in forming heterostructure films are strongly observed. Furthermore, the charge carrier transition from the conduction band edge and/or localised defect state to the valance band edge is measured by photoluminescence spectra. Eventually, it is perceived that p-type NiO/ZnO heterostructure film has ferromagnetism, whereas n-type ZnO and p-type NiO films have weak FM and superparamagnetism. The GCD of the NiO/ZnO thin film electrode display a pseudocapacitive behaviour. A maximum Csp of 114 F/cm3 is obtained from both the CV and GCD studies, which are mainly attributed to the morphological characteristics of nanorod and nanoparticle self-assembling architectures, as well as a rational composition of the two constituents. The experimental results reveal that the spin-coated NiO/ZnO thin films are promising materials for electrochemical supercapacitors.

Tài liệu tham khảo

Agarwal DC, Singh UB, Gupta S, Singhal R, Kulriya PK, Singh F, Tripathi A, Singh J, Joshi US, Avasthi Jiye Cai DK (2019) Sci Rep 9:6675 Purushothaman V, Ramakrishnan V, Jeganathan K (2012) Cryst Eng Comm 14:8390–8395 Singh S, Kumar Y, Kumar H, Vyas S, Periasamy C, Chakrabarti P, Jit S, Park S-H (2017) Nanomater Nanotechnol 7:1–5 Soundarrajan P, Sethuraman. K (2015) RSC Adv 5:44222–44233 Lee C-T, Lin T-S, Chen C-H (2015) J Electron Mater 44:4722–4725 Hassan Ali, Jin Y, Irfan M, Jiang Y (2018) AIP Adv 8:035212 Krishnamoorty K, Kumar G, Veerasubramani S, Rhandhakrishnan, Kim SJ (2014) Mater Res Bull 50:499–502 Raut SS, Dhobale JA, Sankapal BR (2017) Phys E: Low-Dimens Syst Nanostruct 87:209–212 Pujari RB, Lokhande VC, Patil UM, Lee DW, Lokhande CD (2019) Electrochim Acta 301:366–376 Gund GS, Dubal DP, Chodankar NR, Cho JY, Gomez-Romero P, Park C, Lokhande CD (2015) Sci Rep 5:12454–12467 Buathet S, Simalaotao K, Reunchan P, Vailikhit V, Teesetsopon P, Raknual D, Kitisripanya N, Tubtimtae A (2020) Electrochim Acta 341:136049 Kohmoto O, Nakagawa H, Isagawa Y, Chayahara A (2001) J Magn Magn Mater 42:1629–1630 Alnoor H, Pozina G, Khranovskyy V, Liu X, Iandolo D, Willander M, Nur O (2016) J Appl Phys 119:165702 Ren QH, Zhang Y, Lu HL, Wang YP, Liu WJ, Ji XM, Devi A, Jiang AQ, Zhang DW (2018) ACS Appl Mater Interfaces 10:468–476 Wei C, Pang H, Cheng C, Zhao J, Li P, Zhang Y (2014) CrystEngComm 16:4169–4175 Vijayaprasath G, Murugan R, Ravi G, Mahalingam T, Hayakawa Y (2014) Appl Surf Sci 313:870–876 Jia X, Wu X, Liu B (2018) Dalton Trans 47:15506–15511 Yang S, Liu Y, Hao Y, Yang X, Goddard III WA, Zhang XL, Cao B (2018) Adv Sci (Weinh) 5:1700659 Usha KS, Sivakumar R, Sanjeeviraja C (2013) J Appl Phys 114:123501 Vijayaprasath G, Ravi G, Haja Hameed AS, Mahalingam T (2014) J Phys Chem C 118:9715–9725. 12 Feng N, Chen C, Meng J, Wu Y, Liu G, Wang L, Wan H, Guan G (2016) Catal Sci Technol 6:7718–7728 Zhao S, Zhou Y, Zhao K, Liu Z, Han P, Wang S, Xiang W, Chen Z, Lu H, Cheng B, Yang G (2006) Phys B 373:154–156 Zhu BL, Xie M, Wang J, Shi XW, Wu J, Zeng D, Xie CS (2014) Ceram Int 40:12093–12104 Xian F, Li X, Laser O (2013) Technol 45:508–512 Vijayaprasath G, Soundarrajan P, Ravi G (2019) J Electron Mater 48:684–695 Luo Y, Duan G, Li G, Solid J (2007) State Chem 180:2149 2153 Acharya P, Nelson ZJ, Benamara M, Manso RH, Perez Bakovic SI, Abolhassani M, Lee S, Reinhart B, Chen J, Greenlee LF (2019) ACS Omega 4:17209–17222 Grosvenor AP, Biesinger MC, St Smart RC, Stewart McIntyre N (2006) Surf Sci 600:1771–1779 Biju V, Abdul Khadar M (2002) J Nanopart Res 4:247–253 Marchetti L, Miserque F, Perrin S, Pijolat M (2015) Surf Interface Anal 47:632–642 Virgin Jeba S, Sebastiammal S, Sonia S, Fathima AL (2021) Inorg nano Met Chem 51:1431–1441 Vijayaprasath G, Murugan R, Palanisamy S, Prabhu NM, Mahalingam T, Hayakawa Y, Ravi G (2016) Mater Res Bull 76:48–61 Bekermann D, Gasparotto A, Barreca D, Maccato C, Comini E, Sada C, Sberveglieri G, Devi A, Fischer RA (2012) ACS Appl Mater Interfaces 4:928–934 Liu X, Liu J, Sun X (2015) J Mater Chem A 3:13900–13905 Šćepanović M, Grujić-Brojčin M, Vojisavljević K, Bernik S, Srećković T (2010) J Raman Spectrosc 41:914–921 Cole KM, Kirk DW, Thorpe SJ (2018) J Electrochem Soc 165:J3122 Balog A, Janaky C (2019) J Electrochem Soc 166:H3265 Saravanan R, Santhi K, Sivakumar N, Narayanan V, Stephen A (2012) Mater Charact 6(7):10–16 Luo Y-D, Lin Y-H, Zhang X, Liu D, Shen Y, Nan CW. (2013) J Nanometer. https://doi.org/10.1155/2013/252593 Hwang J-D, Chen H-Y, Chen Y-H, Ho T-H (2018) Nanotechnology 29:295705 Saravanakumar B, Haritha A, Ravi G, Yuvakkumar R (2020) J Nanosci 20:2813–2822 Yang M, Lv F, Wang Z, Xiong Y, Li M, Wang W, Zhang L, Wu S, Liu H, Gu Y, Lu Z (2015) RSC Adv 5:31725–31731 Karuppaiah M, Sakthivel P, Asaithambi S, Murugan R, Anandhababu G, Yuvakkumar R, Ravi G (2019) Ceram Int 45:4298–4307 Bhujun B, Tan MT, Shanmugam AS (2017) Results Phys 7:345–353 Yadav AA, Chavan UJ (2016) J Electroanal Chem 782:36–42 Hong S-C, Kim S, Jang W-J, Han T-H, Hong J-P, Oh J-S, Youngkwan Lee TH, Lee J-H, Nam J-D (2014) RSC Adv 4:48276–48284