Fabrication of graphene–TiO2 nanocomposite with improved photocatalytic degradation for acid orange 7 dye under solar light irradiation

Bulletin of Materials Science - Tập 39 - Trang 759-767 - 2016
VENKATA RAMANA POSA1, VISWADEVARAYALU ANNAVARAM1, ADINARAYANA REDDY SOMALA1
1Department of Materials Science & Nanotechnology, Yogi Vemana University, Kadapa, India

Tóm tắt

In this study, photodegradation of the non-biodegradable azo dye acid orange 7 (AO7) was selected as modal target in aqueous solution using graphene–TiO 2 (GR–TiO2) hybrid nanocomposite, was well investigated and elucidated. The crystal phase, special surface area, microscopic analysis of the GR–TiO2 and also, chemical state of the photocatalysts were studied by powdered X-ray diffraction (PXRD), Raman spectrum, field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), high resolution scanning electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), Brunauere Emmette Teller (BET) method and photoluminescence spectroscopy (PL). During photocatalysis, the GR–TiO2 nanocomposite improved photocatalytic performance compared with that of pure TiO 2 towards AO7 organic azo-dye degradation. The reusability test of photocatalytic activity was also examined. A conceivable reaction mechanism was suggested and nattered on the basis of tentative effects. Therefore, the GR–TiO2 nanomaterial can be widely used as a photocatalyst for treating the organic dye contaminant in the field of environmental protection.

Tài liệu tham khảo

Stankovich S, Dikin D A, Dommett G H B, Kohlhaas K M, Zimney E J, Stach E A et al 2006 Nature 442 282 Geim A K and Novoselov K S 2007 Nat. Mater. 6 183 Khalid N R, Ahmed E, Hong Z, Sana L and Ahmed M 2013 Curr. Appl. Phys. 13 659 Lee J S, You K H and Park C B 2012 Adv. Mater. 24 1084 Xiang Q, Yu J and Jaroniec M 2012 Chem. Soc. Rev. 41 782 Xiang Q and Yu J 2013 J. Phys. Chem. Lett. 4 753 Zhang N, Zhang Y H and Xu Y J 2012 Nanoscale 4 5792 Yang M Q and Xu Y J 2013 Phys. Chem. Chem. Phys. 15 19102 Yang M Q, Zhang N, Pagliaro M and Xu Y J 2014 Chem. Soc. Rev. 43 8240 Habisreutinger S N, Schmidt-Mende L and Stolarczyk J K 2013 Angew. Chem. Int. Ed. 52 2 Khan M M, Ansari S A, Pradhan D, Ansari M O, Han D H, Lee J et al 2014 J. Mater. Chem. A 2 637 Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A 2004 Science 306 666 Kryukova G N, Zenkovetsa G A, Shutilova A A, Wilde M, Günther K, Fassler D et al 2007 Appl. Catal. B Environ. 71 169 Zhang J, Wang P, Sun J and Jin Y 2014 ACS Appl. Mater. Interf. 6 19905 Perreault F, Fonseca de Fariaa A and Elimelech M 2015 Chem. Soc. Rev. 44 5861 Yuan L, Yu Q Q, Zhang Y H and Xu Y J 2014 RSC Adv. 4 15264 Muthirulan P, Nirmala Devi C and Meenakshi Sundaram M 2014 Ceram. Inter. 40 5945 Muthirulan P, Nirmala Devi C and Meenakshi Sundaram M 2014 Adv. Mater. Lett. 5 163 Liang Y Y, Wang H L, Casalongue H N S C, Chen Z and Dai H J 2010 Nano Res. 3 701 Hsieh S H, Chen W J and Wu C T 2015 Appl. Surf. Sci. 340 9 Hummers W S and Offeman R E 1958 J. Am. Chem. Soc. 80 1339 Lui G, Liao J Y, Duan A, Zhang Z, Fowler M and Yu A 2013 J. Mater. Chem. A 1 12255 Akhavan O, Ghaderia E and Rahimi K 2012 J. Mater. Chem. 22 23260 Kim J, Khoh W H, Wee B H and Hong J D 2015 RSC Adv. 5 9904 Sun L, Zhao Z, Zhou Y and Liu L 2012 Nanoscale 4 613 Gu L, Wang J, Cheng H, Zhao Y, Liu L and Han X 2013 ACS Appl. Mater. Interf. 5 3085 Zhang H, Guo L H, Wang D, Zhao L and Wan B 2015 ACS Appl. Mater. Interf. 7 1816 Venkata R P, Viswadevarayalu A, Janardhan R K, Varada R A and Adinarayana R S 2016 Korean J. Chem. Eng. 33 456 Park C Y, Kefayat U, Vikram N, Ghosh T, Oh W C and Cho K Y 2013 Bull. Mater. Sci. 36 869