Fabrication of a translational photoacoustic needle sensing probe for interstitial photoacoustic spectral analysis
Tài liệu tham khảo
Kumar, 2015, Pathologic Basis of disease tenth edition, 1328
Joy, 2003, Diagnosis of fatty liver disease, Eur. J. Gastroenterol. Hepatol., 15, 539
Gortzak-Uzan, 2010, Sentinel lymph node biopsy vs. pelvic lymphadenectomy in early stage cervical cancer: Is it time to change the gold standard?, Gynecol. Oncol., 116, 28, 10.1016/j.ygyno.2009.10.049
Loeb, 2012, Infectious complications and hospital admissions after prostate biopsy in a european randomized trial, Eur. Urol., 61, 1110, 10.1016/j.eururo.2011.12.058
Beard, 2011, Biomedical photoacoustic imaging, Interface Focus, 1, 602, 10.1098/rsfs.2011.0028
Hysi, 2012, Photoacoustic ultrasound spectroscopy for assessing red blood cell aggregation and oxygenation, J. Biomed. Opt., 17, 10.1117/1.JBO.17.12.125006
Pu, 2010, Changes of collagen and nicotinamide adenine dinucleotide in human cancerous and normal prostate tissues studied using native fluorescence spectroscopy with selective excitation wavelength, J. Biomed. Opt., 15
Wang, 1979, Photoacoustic tomography: in vivo imaging from organelles to organs, Science, 335, 1458
Wang, 2009, Multiscale photoacoustic microscopy and computed tomography, Nat. Publ. Group, 3
Xu, 2015, Quantifying Gleason scores with photoacoustic spectral analysis: feasibility study with human tissues, Biomed. Opt. Express, 6, 4781, 10.1364/BOE.6.004781
Jo, 2020, Photoacoustic spectral analysis at ultraviolet wavelengths for characterizing the Gleason grades of prostate cancer, Opt. Lett., 45, 6042, 10.1364/OL.409249
Zhang, 2017, Interstitial photoacoustic spectral analysis: instrumentation and validation, Biomed. Opt. Express, 8, 1689, 10.1364/BOE.8.001689
Amidi, 2019, Classification of human ovarian cancer using functional, spectral, and imaging features obtained from in vivo photoacoustic imaging, Biomed. Opt. Express, 10, 2303, 10.1364/BOE.10.002303
Ni, 2021, Characterizing the aggressiveness of prostate cancer using an all-optical needle photoacoustic sensing probe: feasibility study, Opt. Soc. Am.
Xu, 2015, Photoacoustic spectrum analysis for microstructure characterization in biological tissue: Analytical model, Ultrasound Med Biol., 41, 1473, 10.1016/j.ultrasmedbio.2015.01.010
Xu, 2012, Photoacoustic spectrum analysis for microstructure characterization in biological tissue: A feasibility study, Appl. Phys. Lett., 101, 10.1063/1.4768703
Feng, 2016, Characterizing cellular morphology by photoacoustic spectrum analysis with an ultra-broadband optical ultrasonic detector, Opt. Express, 24, 19853, 10.1364/OE.24.019853
Xu, 2014, The functional pitch of an organ: Quantification of tissue texture with photoacoustic spectrum analysis, Radiology, 271, 248, 10.1148/radiol.13130777
Huang, 2018, Interstitial assessment of aggressive prostate cancer by physio-chemical photoacoustics: An ex vivo study with intact human prostates, Med. Phys., 45, 4125, 10.1002/mp.13061
Ni, 2022, Assessment of prostate cancer progression using a translational needle photoacoustic sensing probe: Preliminary study with intact human prostates ex-vivo, Photoacoustics, 28, 10.1016/j.pacs.2022.100418
Guggenheim, 2017, Ultrasensitive plano-concave optical microresonators for ultrasound sensing, Nat. Photonics, 11, 714, 10.1038/s41566-017-0027-x
W.-H. Choi, I. Papautsky, Fabrication of a needle-type pH sensor by selective electrodeposition, Https://Doi.Org/10.1117/1.3580751. 10 (2011) 020501. https://doi.org/10.1117/1.3580751.
Zhang, 2011, A miniature all-optical photoacoustic imaging probe, Photons Plus Ultrasound.: Imaging Sens. 2011, 7899, 78991F
Morris, 2009, A Fabry–Pérot fiber-optic ultrasonic hydrophone for the simultaneous measurement of temperature and acoustic pressure, J. Acoust. Soc. Am., 125, 3611, 10.1121/1.3117437
Zhang, 2015, Characteristics of optimized fibre-optic ultrasound receivers for minimally invasive photoacoustic detection, Photons Plus Ultrasound.: Imaging Sens. 2015, 9323
Bergström, 2008, The absorption of light by rough metal surfaces—a three-dimensional ray-tracing analysis, J. Appl. Phys., 103, 10.1063/1.2930808
D. Fitzpatrick, Noise Analysis, Analog Design and Simulation Using OrCAD Capture and PSpice. (2018) 197–208. https://doi.org/10.1016/B978–0-08–102505-5.00014–8.
Xu, 2015, Photoacoustic spectrum analysis for microstructure characterization in biological tissue: Analytical model, Ultrasound Med. Biol., 41, 1473, 10.1016/j.ultrasmedbio.2015.01.010
Xu, 2012, Photoacoustic spectrum analysis for microstructure characterization in biological tissue: a feasibility study, Appl. Phys. Lett., 101, 10.1063/1.4768703
Chen, 2020, Photothermally tunable Fabry-Pérot fiber interferometer for photoacoustic mesoscopy, Biomed. Opt. Express, 11, 2607, 10.1364/BOE.391980
Li, 2017, Miniature all-optical probe for large synthetic aperture photoacoustic-ultrasound imaging, Opt. Express, 25, 25023, 10.1364/OE.25.025023
Fu, 2022, Optical ultrasound sensors for photoacoustic imaging: a narrative review, Quant. Imaging Med. Surg., 12, 1608, 10.21037/qims-21-605
Zhang, 2014, Ultrabroad bandwidth and highly sensitive optical ultrasonic detector for photoacoustic imaging, ACS Photonics, 1, 1093, 10.1021/ph500159g
Jiang, 2020, Whispering-gallery sensors, Matter, 3, 371, 10.1016/j.matt.2020.07.008
Bae, 2010, Miniature surface-mountable Fabry–Perot pressure sensor constructed with a 45 degree angled fiber, Opt. Lett., 35, 1701, 10.1364/OL.35.001701
Luo, 2020, Angled fiber-based Fabry–Perot interferometer, Opt. Lett., 45, 292, 10.1364/OL.45.000292
Ansari, 2018, All-optical forward-viewing photoacoustic probe for high-resolution 3D endoscopy, Light Sci. Appl., 7, 1, 10.1038/s41377-018-0070-5
Ansari, 2020, Miniature all-optical flexible forward-viewing photoacoustic endoscopy probe for surgical guidance, Opt. Lett., 45, 6238, 10.1364/OL.400295
Westerveld, 2021, Sensitive, small, broadband and scalable optomechanical ultrasound sensor in silicon photonics, Nat. Photonics, 15, 341, 10.1038/s41566-021-00776-0