Fabrication of a translational photoacoustic needle sensing probe for interstitial photoacoustic spectral analysis

Photoacoustics - Tập 31 - Trang 100519 - 2023
Wei-Kuan Lin1, Linyu Ni2, Xueding Wang2,3, Jay L. Guo1, Guan Xu2,4
1Department of Electrical Engineering and Computer Sciences, University of Michigan, 1301 Beal Avenue, Ann Arbor, MI, USA
2Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Blvd, Ann Arbor, MI, USA
3Department of Radiology, University of Michigan, 1301 Catherine St, Ann Arbor, MI, USA
4Department of Ophthalmology and Visual Sciences, University of Michigan, 1000 Wall St, Ann Arbor, MI, USA

Tài liệu tham khảo

Kumar, 2015, Pathologic Basis of disease tenth edition, 1328 Joy, 2003, Diagnosis of fatty liver disease, Eur. J. Gastroenterol. Hepatol., 15, 539 Gortzak-Uzan, 2010, Sentinel lymph node biopsy vs. pelvic lymphadenectomy in early stage cervical cancer: Is it time to change the gold standard?, Gynecol. Oncol., 116, 28, 10.1016/j.ygyno.2009.10.049 Loeb, 2012, Infectious complications and hospital admissions after prostate biopsy in a european randomized trial, Eur. Urol., 61, 1110, 10.1016/j.eururo.2011.12.058 Beard, 2011, Biomedical photoacoustic imaging, Interface Focus, 1, 602, 10.1098/rsfs.2011.0028 Hysi, 2012, Photoacoustic ultrasound spectroscopy for assessing red blood cell aggregation and oxygenation, J. Biomed. Opt., 17, 10.1117/1.JBO.17.12.125006 Pu, 2010, Changes of collagen and nicotinamide adenine dinucleotide in human cancerous and normal prostate tissues studied using native fluorescence spectroscopy with selective excitation wavelength, J. Biomed. Opt., 15 Wang, 1979, Photoacoustic tomography: in vivo imaging from organelles to organs, Science, 335, 1458 Wang, 2009, Multiscale photoacoustic microscopy and computed tomography, Nat. Publ. Group, 3 Xu, 2015, Quantifying Gleason scores with photoacoustic spectral analysis: feasibility study with human tissues, Biomed. Opt. Express, 6, 4781, 10.1364/BOE.6.004781 Jo, 2020, Photoacoustic spectral analysis at ultraviolet wavelengths for characterizing the Gleason grades of prostate cancer, Opt. Lett., 45, 6042, 10.1364/OL.409249 Zhang, 2017, Interstitial photoacoustic spectral analysis: instrumentation and validation, Biomed. Opt. Express, 8, 1689, 10.1364/BOE.8.001689 Amidi, 2019, Classification of human ovarian cancer using functional, spectral, and imaging features obtained from in vivo photoacoustic imaging, Biomed. Opt. Express, 10, 2303, 10.1364/BOE.10.002303 Ni, 2021, Characterizing the aggressiveness of prostate cancer using an all-optical needle photoacoustic sensing probe: feasibility study, Opt. Soc. Am. Xu, 2015, Photoacoustic spectrum analysis for microstructure characterization in biological tissue: Analytical model, Ultrasound Med Biol., 41, 1473, 10.1016/j.ultrasmedbio.2015.01.010 Xu, 2012, Photoacoustic spectrum analysis for microstructure characterization in biological tissue: A feasibility study, Appl. Phys. Lett., 101, 10.1063/1.4768703 Feng, 2016, Characterizing cellular morphology by photoacoustic spectrum analysis with an ultra-broadband optical ultrasonic detector, Opt. Express, 24, 19853, 10.1364/OE.24.019853 Xu, 2014, The functional pitch of an organ: Quantification of tissue texture with photoacoustic spectrum analysis, Radiology, 271, 248, 10.1148/radiol.13130777 Huang, 2018, Interstitial assessment of aggressive prostate cancer by physio-chemical photoacoustics: An ex vivo study with intact human prostates, Med. Phys., 45, 4125, 10.1002/mp.13061 Ni, 2022, Assessment of prostate cancer progression using a translational needle photoacoustic sensing probe: Preliminary study with intact human prostates ex-vivo, Photoacoustics, 28, 10.1016/j.pacs.2022.100418 Guggenheim, 2017, Ultrasensitive plano-concave optical microresonators for ultrasound sensing, Nat. Photonics, 11, 714, 10.1038/s41566-017-0027-x W.-H. Choi, I. Papautsky, Fabrication of a needle-type pH sensor by selective electrodeposition, Https://Doi.Org/10.1117/1.3580751. 10 (2011) 020501. https://doi.org/10.1117/1.3580751. Zhang, 2011, A miniature all-optical photoacoustic imaging probe, Photons Plus Ultrasound.: Imaging Sens. 2011, 7899, 78991F Morris, 2009, A Fabry–Pérot fiber-optic ultrasonic hydrophone for the simultaneous measurement of temperature and acoustic pressure, J. Acoust. Soc. Am., 125, 3611, 10.1121/1.3117437 Zhang, 2015, Characteristics of optimized fibre-optic ultrasound receivers for minimally invasive photoacoustic detection, Photons Plus Ultrasound.: Imaging Sens. 2015, 9323 Bergström, 2008, The absorption of light by rough metal surfaces—a three-dimensional ray-tracing analysis, J. Appl. Phys., 103, 10.1063/1.2930808 D. Fitzpatrick, Noise Analysis, Analog Design and Simulation Using OrCAD Capture and PSpice. (2018) 197–208. https://doi.org/10.1016/B978–0-08–102505-5.00014–8. Xu, 2015, Photoacoustic spectrum analysis for microstructure characterization in biological tissue: Analytical model, Ultrasound Med. Biol., 41, 1473, 10.1016/j.ultrasmedbio.2015.01.010 Xu, 2012, Photoacoustic spectrum analysis for microstructure characterization in biological tissue: a feasibility study, Appl. Phys. Lett., 101, 10.1063/1.4768703 Chen, 2020, Photothermally tunable Fabry-Pérot fiber interferometer for photoacoustic mesoscopy, Biomed. Opt. Express, 11, 2607, 10.1364/BOE.391980 Li, 2017, Miniature all-optical probe for large synthetic aperture photoacoustic-ultrasound imaging, Opt. Express, 25, 25023, 10.1364/OE.25.025023 Fu, 2022, Optical ultrasound sensors for photoacoustic imaging: a narrative review, Quant. Imaging Med. Surg., 12, 1608, 10.21037/qims-21-605 Zhang, 2014, Ultrabroad bandwidth and highly sensitive optical ultrasonic detector for photoacoustic imaging, ACS Photonics, 1, 1093, 10.1021/ph500159g Jiang, 2020, Whispering-gallery sensors, Matter, 3, 371, 10.1016/j.matt.2020.07.008 Bae, 2010, Miniature surface-mountable Fabry–Perot pressure sensor constructed with a 45 degree angled fiber, Opt. Lett., 35, 1701, 10.1364/OL.35.001701 Luo, 2020, Angled fiber-based Fabry–Perot interferometer, Opt. Lett., 45, 292, 10.1364/OL.45.000292 Ansari, 2018, All-optical forward-viewing photoacoustic probe for high-resolution 3D endoscopy, Light Sci. Appl., 7, 1, 10.1038/s41377-018-0070-5 Ansari, 2020, Miniature all-optical flexible forward-viewing photoacoustic endoscopy probe for surgical guidance, Opt. Lett., 45, 6238, 10.1364/OL.400295 Westerveld, 2021, Sensitive, small, broadband and scalable optomechanical ultrasound sensor in silicon photonics, Nat. Photonics, 15, 341, 10.1038/s41566-021-00776-0